Skip to main content
Log in

Synergistic evaluation of Moringa oleifera extract and ß-lactam antibiotic to restore the susceptibility of methicillin-resistant Staphylococcus aureus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Introduction

The antibiotic resistance has become a major threat to global health. The combinatorial use of two or more compounds to develop a new formulation may overcome the emerging cases of drug resistance. Moringa oleifera has been utilized as a strong nutritional, immunomodulator and therapeutic agent for decades. In this study, different parts of Moringa oleifera were screened for bioactive compounds that can act as a resistance modifying agent for multi-drug resistant organisms (MDROs).

Methodology

Initially, the combined effect of stem bark extracts and ampicillin was calculated by checkerboard assay. Active compounds of effective extract were assessed by High Performance Liquid Chromatography (HPLC). Minimal Inhibitory Concentration (MIC) and Fractional Inhibitory Concentration Index (FICI) were calculated to evaluate the synergistic behavior of stem bark extract with ampicillin. To study the blocking of resistance pathways of Methicillin-Resistant Staphylococcus aureus (MRSA) western blot was performed.

Results

The results revealed that stem bark has significant anti-MRSA activity. The methanolic extract of stem bark in combination with ampicillin showed the highest synergistic effect (FICI value ≤ 0.237) against MRSA. Killing kinetics and membrane potential of ampicillin alone and in combination revealed an increase in the inhibitory potential of ampicillin against MRSA. Decolourization in iodometric assay confirmed the inhibition of β-lactamase, western blot results confirmed the blocking of penicillin-binding protein (PBP2a) expression with the restoration of MRSA sensitivity against β-lactams.

Conclusion

It can be concluded that methanolic extract of Moringa oleifera stem bark has bioactive compounds and can be used as an adjuvant with antibiotics to modify the resistance of MDROs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MRSA:

Methicillin-resistant staphylococcus aureus

MDR:

Multi-drug resistance

MDROs:

Multidrug resistant organisms

TPC:

Total phenolic content

TFC:

Total flavonoid content

MICs:

Minimal inhibitory concentrations

FICI:

Fractional inhibitory concentration index

DMSO:

Dimethyl sulfoxide

PAGE:

Polyacrylamide gel electrophoresis

PBP2a:

Penicillin binding protein 2a

HPLC:

High-performance liquid chromatography

PBS:

Phosphate buffered saline

BCIP:

5-Bromo-4-chloro-3-indolylphosphate

CFU:

Colony forming unit

SDS-PAGE:

Sodium dodecyl sulfate

NBT:

Nitro blue tetrazolium

ALP:

Alkaline phosphatase

References

  1. de Kraker ME, Stewardson AJ, Harbarth S (2016) Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 13(11):e1002184

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brumfitt W, Hamilton-Miller J (2018) Methicillin-resistant Staphylococcus aureus. N Engl J Med 4(1):1–23

    Google Scholar 

  3. Todar K (2006) Todar’s online textbook of bacteriology. University of Wisconsin-Madison Department of Bacteriology, Madison

    Google Scholar 

  4. Hasan TH, Al-Harmoosh RA (2020) Mechanisms of antibiotics resistance in bacteria. Sys Rev Pharm 11(6):817–823

    CAS  Google Scholar 

  5. Iddah M, Nyongesa PK (2021) Microbiology of methicillin resistant Staphylococcus aureus: a review

  6. Zeng X, Lin J (2013) Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Front Microbiol 4:128

    Article  PubMed  PubMed Central  Google Scholar 

  7. Roell KR, Reif DM, Motsinger-Reif AA (2017) An introduction to terminology and methodology of chemical synergy: perspectives from across disciplines. Front Pharmacol 8:158

    Article  PubMed  PubMed Central  Google Scholar 

  8. Drawz SM, Bonomo RA (2010) Three decades of β-lactamase inhibitors. Clin Microbiol Rev 23(1):160–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Russ D, Glaser F, Tamar ES, Yelin I, Baym M, Kelsic ED, Zampaloni C, Haldimann A, Kishony R (2020) Escape mutations circumvent a tradeoff between resistance to a beta-lactam and resistance to a beta-lactamase inhibitor. Nat Commun 11(1):1–9

    Article  Google Scholar 

  10. Gorlenko CL, Kiselev HY, Budanova EV, Zamyatnin AA, Ikryannikova LN (2020) Plant secondary metabolites in the battle of drugs and drug-resistant bacteria: new heroes or worse clones of antibiotics? Antibodies 9(4):170

    CAS  Google Scholar 

  11. Romano B, Lucariello G, Capasso R (2021) Topical collection “pharmacology of medicinal plants.” Multidisciplinary Digital Publishing Institute, Basel

    Book  Google Scholar 

  12. Fernandes Â, Bancessi A, Pinela J, Dias MI, Liberal Â, Calhelha RC, Ćirić A, Soković M, Catarino L, Ferreira IC, Barros L (2021) Nutritional and phytochemical profiles and biological activities of Moringa oleifera Lam. edible parts from Guinea-Bissau (West Africa). Food Chem 341:128229

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Chen X, Wu A (2016) Mini review on antimicrobial activity and bioactive compounds of Moringa oleifera. Med Chem 6(9):2161

    Article  Google Scholar 

  14. Justine VT, Mustafa M, Kankara SS, Go R (2019) Effect of drying methods and extraction solvents on phenolic antioxidants and antioxidant activity of scurrula ferruginea (jack) danser (loranthaceae) leaf extracts. Sains Malaysiana 48(7):1383–1393

    Article  CAS  Google Scholar 

  15. Nobossé P, Fombang EN, Mbofung CM (2018) Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. leaves. Food Sci Nutr 6(8):2188–2198

    Article  PubMed  PubMed Central  Google Scholar 

  16. Mahdi H, Yousif E, Khan N, Mahmud R, Murugaiyah V, Asmawi M (2016) Optimizing extraction conditions of Moringa oleifera LAM leaf for percent yield, total phenolics content, total flavonoids content and total radical scavenging activity. Int J Adv Res 4(11):682–695

    Article  CAS  Google Scholar 

  17. Felhi S, Daoud A, Hajlaoui H, Mnafgui K, Gharsallah N, Kadri A (2017) Solvent extraction effects on phytochemical constituents profiles, antioxidant and antimicrobial activities and functional group analysis of Ecballium elaterium seeds and peels fruits. Food Sci Technol 37(3):483–492

    Article  Google Scholar 

  18. Vongsak B, Sithisarn P, Mangmool S, Thongpraditchote S, Wongkrajang Y, Gritsanapan W (2013) Maximizing total phenolics, total flavonoids contents and antioxidant activity of Moringa oleifera leaf extract by the appropriate extraction method. Ind Crops Prod 44:566–571

    Article  CAS  Google Scholar 

  19. Tagg J, McGiven A (1971) Assay system for bacteriocins. Appl Microbiol 21(5):943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu W, Li LP, Zhang JD, Li Q, Shen H, Chen SM, He LJ, Yan L, Xu GT, An MM, Jiang YY (2014) Synergistic antifungal effect of glabridin and fluconazole. PLoS ONE 9(7):e103442

    Article  PubMed  PubMed Central  Google Scholar 

  21. Faleiro M, Miguel MG (2013) Use of essential oils and their components against multidrug-resistant bacteria. Fighting multidrug resistance with herbal extracts, essential oils and their components. Elsevier, Amsterdam, pp 65–94

    Chapter  Google Scholar 

  22. Trevisan DA, Silva AF, Negri M, Abreu BA, Machinski M, Patussi EV et al (2018) Antibacterial and antibiofilm activity of carvacrol against Salmonella enterica serotype typhimurium. J Pharm Sci 54:e17229

    Google Scholar 

  23. Basri DF, Yahya NA, Shamsuddin NA (2019) Time-kill assay and post-antibiotic effect of acetone extract from the stem bark of Canarium odontophyllum against Methicillin-resistant Staphylococcus aureus Mu50 strain. J Appl Biol Biotechnol 7(03):12–16

    Article  CAS  Google Scholar 

  24. Gerits E, Blommaert E, Lippell A, O’Neill AJ, Weytjens B, De Maeyer D, Fierro AC, Marchal K, Marchand A, Chaltin P, Spincemaille P (2016) Elucidation of the mode of action of a new antibacterial compound active against Staphylococcus aureus and Pseudomonas aeruginosa. PLoS ONE 11(5):e0155139

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li HN, Wang CY, Wang CL, Chou CH, Leu YL, Chen BY (2019) Antimicrobial effects and mechanisms of ethanol extracts of Psoralea corylifolia seeds against Listeria monocytogenes and methicillin-Resistant Staphylococcus aureus. Foodborne Pathogens Dis 16(8):573–580

    Article  Google Scholar 

  26. O’Callaghan CH, Morris A, Kirby SM, Shingler AH (1972) Novel method for detection of β-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother 1(4):283–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klitgaard JK, Skov MN, Kallipolitis BH, Kolmos HJ (2008) Reversal of methicillin resistance in Staphylococcus aureus by thioridazine. J Antimicrob Chemother 62(6):1215–1221

    Article  CAS  PubMed  Google Scholar 

  28. do Nascimento KD, Reis IP, Augusta IM (2017) Total phenolic and antioxidant capacity of flower, leaf and seed of Moringa oleifera. Nutr Res 1:1

    Google Scholar 

  29. Prabakaran M, Kim SH, Sasireka A, Chandrasekaran M, Chung IM (2018) Polyphenol composition and antimicrobial activity of various solvent extracts from different plant parts of Moringa oleifera. Food Biosci 26:23–29

    Article  CAS  Google Scholar 

  30. Patel N, Mohan JS (2018) Antimicrobial activity and phytochemical analysis of Moringa oleifera Lam. crude extracts against selected bacterial and fungal strains. Int J Pharmacogn Phytochem Res 10(02):68–79

    Google Scholar 

  31. Zaffer M, Ahmad S, Sharma R, Mahajan S, Gupta A, Agnihotri RK (2014) Antibacterial activity of bark extracts of Moringa oleifera Lam. against some selected bacteria. Pak J Pharm Sci 27(6):1857–1862

    PubMed  Google Scholar 

  32. Kilany MJ (2016) Inhibition of human pathogenic bacteria by Moringa oleifera cultivated in Jazan (Kingdom of Saudi Arabia) and study of synergy to amoxicillin. Egypt Pharm J 15(1):38–38

    Article  Google Scholar 

  33. Patil SD, Jane R (2013) Antimicrobial activity of Moringa oleifera and its synergism with Cleome viscose. Int J Life Sci 1(3):182–189

    Google Scholar 

  34. Thara KM, Zuhara KF, Raji TK (2015) Inhibitory and synergistic effect of moringa oleifera extracts on clinical and standard strains of microorganisms and its biochemical analysis. Indo Am J Pharm Res 5:508–514

    CAS  Google Scholar 

  35. Dubeni ZB, Mayekiso B, Muchenje V, Muphangwa J (2018) Antibacterial activity and time-kill kinetics study of Moringa oleifera Lam. crude leaf extracts. S Afr J Bot 115:284

    Article  Google Scholar 

  36. Gonelimali FD, Lin J, Miao W, Xuan J, Charles F, Chen M, Hatab SR (2018) Antimicrobial properties and mechanism of action of some plant extracts against food pathogens and spoilage microorganisms. Front Microbiol 9:1639

    Article  PubMed  PubMed Central  Google Scholar 

  37. Phitaktim S, Chomnawang M, Sirichaiwetchakoon K, Dunkhunthod B, Hobbs G, Eumkeb G (2016) Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus. BMC Microbiol 16(1):1–14

    Article  Google Scholar 

  38. Arora S, Nandi SP (2017) Reversion of antibiotic resistance with beta-lactamase inhibitor from medicinal plants. Asian J Pharm Clin Res 10:204–208

    Article  CAS  Google Scholar 

  39. Faheem M, Rehman MT, Danishuddin M, Khan AU (2013) Biochemical characterization of CTX-M-15 from Enterobacter cloacae and designing a novel non-β-lactam-β-lactamase inhibitor. PLoS ONE 8(2):e56926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arya DS, Tomar A, Broor S, Kaushik S, Bharara T (2021) Synergistic effect of naringenin with conventional antibiotics against methicillin resistant Staphylococcus aureus. Eur J Mol Clin Med 8(3):1770–1784

    Google Scholar 

  41. Santiago C, Pang EL, Lim KH, Loh HS, Ting KN (2015) Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora. BMC Complement Altern Med 15(1):1–7

    Google Scholar 

  42. Wang S, Kang OH, Kwon DY (2021) Trans-cinnamaldehyde exhibits synergy with conventional antibiotic against methicillin-resistant Staphylococcus aureus. Int J Mol Sci 22(5):2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ihtisham M, Ihsan-ul-Haq SS, Mirza BU (2013) HPLC-DAD analysis and free radical scavenging potential of Quercus Dilatata L. Pak J Bot 45(S1):577–581

    Google Scholar 

  44. Potestà M, Minutolo A, Gismondi A, Canuti L, Kenzo M, Roglia V, Macchi F, Grelli S, Canini A, Colizzi V, Montesano C (2019) Cytotoxic and apoptotic effects of different extracts of Moringa oleifera Lam on lymphoid and monocytoid cells. Exp Ther Med 18(1):5–17

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the KIBGE, University of Karachi, Karachi, Pakistan for providing all the laboratory facilities and financial assistance. We would like to thank Editage (www.editage.com) for English language editing.

Funding

There was no funding was available to support this project.

Author information

Authors and Affiliations

Authors

Contributions

This study was initially conceived and designed by SV and SG. Methodology and protocols were finalized by SV, SG, AA. While experiments handling and data collection was ended by SV. Whereas data analysis and interpretation by SG, AA, AAZ. For manuscript writing the initial draft was prepared by SV that was further reviewed and edited by SG, AA, AAZ.

Corresponding author

Correspondence to Saddia Galani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vankwani, S., Ansari, A., Azhar, A. et al. Synergistic evaluation of Moringa oleifera extract and ß-lactam antibiotic to restore the susceptibility of methicillin-resistant Staphylococcus aureus. Mol Biol Rep 49, 421–432 (2022). https://doi.org/10.1007/s11033-021-06889-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06889-7

Keywords

Navigation