Skip to main content
Log in

How long does the mRNA remains stable in untreated whole bovine blood?

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

High quality and quantity of messenger RNA (mRNA) are required for accuracy of gene expression studies and other RNA-based downstream applications. Since RNA is considered a labile macromolecular prone to degradation, which may result in falsely altered gene expression patterns, several commercial stabilizing reagents have been developed aiming to keep RNA stable for long period. However, for studies involving large number of experimental samples, the high costs related to these specific reagents may constitute a barrier.

Methods and results

In this context the present study was designed aiming to evaluate the stability of mRNA in whole bovine blood collected in EDTA tubes during storage at common fridge (4 °C). Whole blood samples were collected from six Holstein calves and submitted to RNA extraction in each different interval: immediately after blood sampling (< 2 h), at 1-day post-sampling (dps), 2 dps, 3 dps, 7 dps and 14dps intervals. RNA integrity and purity were evaluated, and RT-qPCR assays were run using seven different genes (B2M, ACTB, PPIA, GAPDH, YWHAZ, CD4 and IFN-γ) aiming to evaluate the presence of altered gene transcription during storage. All extracted RNA samples presented high purity, while optimal integrity and unaltered gene expression were observed in whole experimental group up to 3 days of storage.

Conclusion

Bovine blood RNA remained stable in K3EDTA tubes for 3 days stored at common fridge and can be successfully and accurately used for gene expression studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data availability

All experimental data may be available if requested.

References

  1. Hammerle-Fickinger A, Riedmaier I, Becker C, Meyer HHD, Pfaffl MW, Ulbrich SE (2010) Validation of extraction methods for total RNA and miRNA from bovine blood prior to quantitative gene expression analyses. Biotechnol Lett 32:35–44. https://doi.org/10.1007/s10529-009-0130-2

    Article  CAS  PubMed  Google Scholar 

  2. Sheridan MP, Browne JA, MacHugh DE, Costello E, Gormley E (2012) Impact of delayed processing of bovine peripheral blood on differential gene expression. Vet Immunol Immunopat 145:199–205. https://doi.org/10.1016/j.vetimm.2011.11.006

    Article  CAS  Google Scholar 

  3. Brym P, Ruść A, Kamiński S (2013) Evaluation of reference genes for qRT-PCR gene expression studies in whole blood samples from healthy and leukemia-virus infected cattle. Vet Immunol Immunopathol. https://doi.org/10.1016/j.vetimm.2013.03.004

    Article  PubMed  Google Scholar 

  4. Caetano LC, Miranda-Furtado CL, Batista LA, Pitangui-Molina CP, Higa TT, Padovan CC, Rosa-e-Silva ACJS (2019) Validation of reference genes for gene expression studies in bovine oocytes and cumulus cells derived from in vitro maturation. Anim Reprod 16(2):290–296. https://doi.org/10.21451/1984-3143-AR2018-0064

    Article  PubMed  PubMed Central  Google Scholar 

  5. Donohue DE, Gautam A, Miller SA, Srinivasan S, Abu-Amara D, Campbell R, Marmar CR, Hammamieh R, Jett M (2019) Gene expression profiling of whole blood: a comparative assessment of RNA-stabilizing collection methods. PLoS ONE 14(10):e0223065. https://doi.org/10.1371/journal.pone.0223065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gautam A, Donohue D, Hoke A, Miller SA, Srinivasan S, Sowe B, Detwiler L, Lynch J, Levangie M, Hammamieh R, Jett M (2019) Investigating gene expression profiles of whole blood and peripheral blood mononuclear cells using multiple collection and processing methods. PLoS ONE 14(12):e0225137. https://doi.org/10.1371/journal.pone.0225137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garner JB, Chamberlain AJ, Jagt CV, Nguyen TTT, Mason BA, Marett LC, Leury BJ, Wales WJ, Hayes BJ (2020) Gene expression of the heat stress response in bovine peripheral white blood cells and milk somatic cells in vivo. PLoS ONE 10(1):19181. https://doi.org/10.1038/s41598-020-75438-2

    Article  CAS  Google Scholar 

  8. Rodríguez A, Duyvejonck H, Belleghem JDV, Gryp T, Simaey LV, Vermeulen S, Mechelen EV, Vaneechoutte M (2020) Comparison of procedures for RNA-extraction from peripheral blood mononuclear cells. PLoS ONE 15(2):e0229423. https://doi.org/10.1371/journal.pone.0229423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu X, Li Q, Wang X, Zhou X, Liao Q, He X, Zhang J, Sun J, Wu J, Cheng L, Zhang Y (2015) Comparison of six different pretreatment methods for blood RNA extraction. Biopreserv Biobank 3(1):56–60. https://doi.org/10.1089/bio.2014.0090

    Article  CAS  Google Scholar 

  10. Wright C, Bergstrom D, Dai H, Marton M, Morris M, Tokiwa G, Wang Y, Fare T (2008) Characterization of globin RNA interference in gene expression profiling of whole-blood samples. Clin Chem 54(2):396–405. https://doi.org/10.1373/clinchem.2007.093419

    Article  CAS  PubMed  Google Scholar 

  11. Liu J, Walter E, Stenger D, Thach D (2006) Effects of globin mRNA reduction methods on gene expression profiles from whole blood. J Mol Diagn 8:551–558. https://doi.org/10.2353/jmoldx.2006.060021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Correia CN, McLoughlin KE, Nalpas NC, Magee DA, Rue-Albrecht KR, Gordon SV, MacHugh DE (2018) RNA sequencing (RNA-Seq) reveals extremely low levels of reticulocyte-derived globin gene transcripts in peripheral blood from horses (Equus caballus) and cattle (Bos taurus). Front Genet 9:278. https://doi.org/10.3389/fgene.2018.00278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Das K, Norton SE, Alt JR, Krzyzanowski GD, Williams TL, Fernando MR (2014) Stabilization of cellular RNA in blood during storage at room temperature: a comparison of cell-free RNA BCT® with K3EDTA tubes. Mol Diagn Ther 18:647–653. https://doi.org/10.1007/s40291-014-0118-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang LH, Lin PH, Tsai KH, Wang LJ, Huang YH, Kuo HC, Li SC (2017) The effects of storage temperature and duration of blood samples on DNA and RNA qualities. PLoS ONE 12(9):0184692. https://doi.org/10.1371/journal.pone.0184692

    Article  CAS  Google Scholar 

  15. Jiang Z, Uboh CE, Chen J, Soma LR (2013) Isolation of RNA from equine peripheral blood cells: comparison of methods. Springerplus 2(478):1–6. https://doi.org/10.1186/2193-1801-2-478

    Article  CAS  Google Scholar 

  16. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1-0034.11. https://doi.org/10.1186/gb-2002-3-7-research0034

    Article  Google Scholar 

  17. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. https://doi.org/10.1158/0008-5472.can-04-0496

    Article  CAS  Google Scholar 

  18. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeperÐExcel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515. https://doi.org/10.1023/B:BILE.0000019559.84305.47

    Article  CAS  PubMed  Google Scholar 

  19. Pihur V, Datta S, Datta S (2007) Weighted rank aggregation of cluster validation measures: a Monte Carlo cross-entropy approach. Bioinformatics 23:1607–1615. https://doi.org/10.1093/bioinformatics/btm158

    Article  CAS  PubMed  Google Scholar 

  20. Steibel JO, Poletto R, Coussens PM, Rosa GJM (2009) A powerful and flexible linear mixed model framework for the analysis of relative quantification RT-PCR data. Genomics 94:146–152. https://doi.org/10.1016/j.ygeno.2009.04.008

    Article  CAS  PubMed  Google Scholar 

  21. Field LA, Jordan RM, Hadix JA, Dunn MA, Shriver CD, Ellsworth RE, Ellsworth DL (2007) Functional identity of genes detectable in expression profiling assays following globin mRNA reduction of peripheral blood samples. Clin Biochem 40:499–502. https://doi.org/10.1016/j.clinbiochem.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  22. Li L, Ying L, Naesens M, Xiao W, Sigdel T, Hsieh S, Martin J, Chen R, Liu K, Mindrinos M, Davis R, Minnie S (2008) Interference of globin genes with biomarker discovery for allograft rejection in peripheral blood samples. Physiol Genomics 32:190–197. https://doi.org/10.1152/physiolgenomics.00216.2007

    Article  CAS  PubMed  Google Scholar 

  23. Raghavachari N, Xu X, Munson PJ, Gladwin MT (2009) Characterization of whole blood gene expression profiles as a sequel to globin mRNA reduction in patients with sickle cell disease. PLoS ONE 4(8):e6484. https://doi.org/10.1371/journal.pone.0006484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Okino CH, Basseto CC, Giglioti R, Silva PC, Tonelli MF, Marcondes CR, Oliveira HN, Oliveira MCS (2020) A polymorphic CD4 epitope related to increased susceptibility to Babesia bovis in Canchim calves. Vet Immunol Immunopathol 230:110–132. https://doi.org/10.1016/j.vetimm.2020.110132

    Article  CAS  Google Scholar 

Download references

Funding

This research study was supported by the São Paulo State Research Support Foundation (FAPESP) (Grant Nr. 2019/22675-6, 2016/07216-7).

Author information

Authors and Affiliations

Authors

Contributions

RG and CHO: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Supervision, Validation, Visualization, Writing—original draft, Writing—review & editing; HNO, LMK, AEVF and MCSO: Conceptualization, Supervision, Validation, Visualization, Writing—original draft, Writing—review & editing. BTA: Methodology. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cintia Hiromi Okino.

Ethics declarations

Conflict of interest

The authors declare that there is no competing interest or conflicts of interest.

Informed consent

The authors declare that they consent to participate of this manuscript.

Consent for publication

The authors declare that they consent publication of this manuscript.

Research involving human and animal rights

All the animals handling in accordance with the ethical principles and guidelines adopted by the Brazilian College of Experimentation. All procedures were approved by the Ethical Committee on Animal Experimentation of the Instituto de Zootecnia (Protocol Nr. 298–2020).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giglioti, R., Azevedo, B.T., de Oliveira, H.N. et al. How long does the mRNA remains stable in untreated whole bovine blood?. Mol Biol Rep 49, 789–795 (2022). https://doi.org/10.1007/s11033-021-06808-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06808-w

Keywords

Navigation