Skip to main content
Log in

KMT2A-ARHGEF12, a therapy related fusion with poor prognosis

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The detection of KMT2A gene rearrangements have an important impact on the prognosis and management of acute leukemias. These alterations most commonly involve reciprocal translocations at specific breakpoint regions within KMT2A. To date, more than 100 translocation partner genes of KMT2A have been identified, with different effects on risk stratification.

Methods and results

We report the case of a mature plasmacytoid dendritic cells proliferation associated with B lymphoblasts harboring a KMT2A-ARHGEF12 fusion. This rare rearrangement, resulting from a cryptic deletion on the long arm of chromosome 11, is located outside the known major and minor breakpoint regions of KMT2A, not reported to date. The review of the few cases of KMT2A-ARHGEF12 reveals the tendency of this deletion to occur in therapy related hematologic neoplasm and confer unfavorable prognosis.

Conclusion

This review sheds light into the rare KMT2A-ARHGEF12 fusion in leukemia. Reporting rare chimeras is essential to improve knowledge about the biological mechanism and associated clinical consequences

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Data Availability

Data presented in this study can be found in the Laboratory Information System of the centre hospitalier de Versailles and the Institute of Pharmaceutical Biology/DCAL, Goethe-University Frankfurt.

Code availability

Not applicable.

References

  1. Ntziachristos P, Mullenders J, Trimarchi T, Aifantis I (2013) Mechanisms of epigenetic regulation of leukemia onset and progression. Adv Immunol 117:1–38. https://doi.org/10.1016/B978-0-12-410524-9.00001-3

    Article  CAS  PubMed  Google Scholar 

  2. Meyer C, Burmeister T, Gröger D, Tsaur G, Fechina L, Renneville A, Sutton R, Venn NC, Emerenciano M, Pombo-de-Oliveira MS, Barbieri Blunck C, Almeida Lopes B, Zuna J, Trka J, Ballerini P, Lapillonne H, De Braekeleer M, Cazzaniga G, Corral Abascal L, van der Velden VHJ, Delabesse E, Park TS, Oh SH, Silva MLM, Lund-Aho T, Juvonen V, Moore AS, Heidenreich O, Vormoor J, Zerkalenkova E, Olshanskaya Y, Bueno C, Menendez P, Teigler-Schlegel A, Zur Stadt U, Lentes J, Göhring G, Kustanovich A, Aleinikova O, Schäfer BW, Kubetzko S, Madsen HO, Gruhn B, Duarte X, Gameiro P, Lippert E, Bidet A, Cayuela JM, Clappier E, Alonso CN, Zwaan CM, van den Heuvel-Eibrink MM, Izraeli S, Trakhtenbrot L, Archer P, Hancock J, Möricke A, Alten J, Schrappe M, Stanulla M, Strehl S, Attarbaschi A, Dworzak M, Haas OA, Panzer-Grümayer R, Sedék L, Szczepański T, Caye A, Suarez L, Cavé H, Marschalek R (2018) The MLL recombinome of acute leukemias in 2017. Leukemia 32(2):273–284. https://doi.org/10.1038/leu.2017.213

    Article  CAS  PubMed  Google Scholar 

  3. Gruber TA, J.E.R. (2018) Chapter 62 - Acute Myeloid Leukemia in Children, in Hematology. Elsevier, Amsterdam

    Google Scholar 

  4. Swerdlow SH, C.E., Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J (2017) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France

  5. Moreau P, Attal M, Hulin C, Arnulf B, Belhadj K, Benboubker L, Béné MC, Broijl A, Caillon H, Caillot D, Corre J, Delforge M, Dejoie T, Doyen C, Facon T, Sonntag C, Fontan J, Garderet L, Jie KS, Karlin L, Kuhnowski F, Lambert J, Leleu X, Lenain P, Macro M, Mathiot C, Orsini-Piocelle F, Perrot A, Stoppa AM, van de Donk NW, Wuilleme S, Zweegman S, Kolb B, Touzeau C, Roussel M, Tiab M, Marolleau JP, Meuleman N, Vekemans MC, Westerman M, Klein SK, Levin MD, Fermand JP, Escoffre-Barbe M, Eveillard JR, Garidi R, Ahmadi T, Zhuang S, Chiu C, Pei L, de Boer C, Smith E, Deraedt W, Kampfenkel T, Schecter J, Vermeulen J, Avet-Loiseau H, Sonneveld P (2019) Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study. Lancet 394(10192):29–38. https://doi.org/10.1016/S0140-6736(19)31240-1

    Article  CAS  PubMed  Google Scholar 

  6. van Dongen JJ, Langerak AW, Brüggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, García-Sanz R, van Krieken JH, Droese J, González D, Bastard C, White HE, Spaargaren M, González M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 12:2257–2317. https://doi.org/10.1038/sj.leu.2403202

    Article  Google Scholar 

  7. van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, Flohr T, Sutton R, Cave H, Madsen HO, Cayuela JM, Trka J, Eckert C, Foroni L, Zur Stadt U, Beldjord K, Raff T, van der Schoot CE, van Dongen JJ (2007) European Study Group on MRD detection in ALL (ESG-MRD-ALL). Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 4:604–611. https://doi.org/10.1038/sj.leu.2404586

    Article  CAS  Google Scholar 

  8. Meyer C, Lopes BA, Caye-Eude A, Cavé H, Arfeuille C, Cuccuini W, Sutton R, Venn NC, Oh SH, Tsaur G, Escherich G, Feuchtinger T, Kosasih HJ, Khaw SL, Ekert PG, Pombo-de-Oliveira MS, Bidet A, Djahanschiri B, Ebersberger I, Zaliova M, Zuna J, Zermanova Z, Juvonen V, Grümayer RP, Fazio G, Cazzaniga G, Larghero P, Emerenciano M, Marschalek R (2019) Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL-USP2 fusions. Leukemia 33(9):2306–2340. https://doi.org/10.1038/s41375-019-0451-7

    Article  PubMed  PubMed Central  Google Scholar 

  9. Facchetti F, Cigognetti M, Fisogni S, Rossi G, Lonardi S, Vermi W (2016) Neoplasms derived from plasmacytoid dendritic cells. Mod Pathol 29(2):98–111. https://doi.org/10.1038/modpathol.2015.145

    Article  CAS  PubMed  Google Scholar 

  10. Cook JR (2009) Chapter 11 - Fluorescence In Situ Hybridization, in Cell and Tissue Based Molecular Pathology. Churchill Livingstone

    Google Scholar 

  11. de Haas V, Ismaila N, Advani A, Arber DA, Dabney RS, Patel-Donelly D, Kitlas E, Pieters R, Pui CH, Sweet K, Zhang L (2019) Initial diagnostic work-up of acute leukemia: ASCO clinical practice guideline endorsement of the college of american pathologists and American society of hematology guideline. J Clin Oncol 37(3):239–253. https://doi.org/10.1200/JCO.18.01468

    Article  PubMed  Google Scholar 

  12. Szczepański T, Harrison CJ, van Dongen JJ (2010) Genetic aberrations in paediatric acute leukaemias and implications for management of patients. Lancet Oncol 11(9):880–889. https://doi.org/10.1016/S1470-2045(09)70369-9

    Article  CAS  PubMed  Google Scholar 

  13. Burmeister T, Marschalek R, Schneider B, Meyer C, Gökbuget N, Schwartz S, Hoelzer D, Thiel E (2006) Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations. Leukemia 20(3):451–457. https://doi.org/10.1038/sj.leu.2404082

    Article  CAS  PubMed  Google Scholar 

  14. Van der Velden VH, Corral L, Valsecchi MG, Jansen MW, De Lorenzo P, Cazzaniga G, Panzer-Grümayer ER, Schrappe M, Schrauder A, Meyer C, Marschalek R, Nigro LL, Metzler M, Basso G, Mann G, Den Boer ML, Biondi A, Pieters R, Van Dongen JJ (2009) Interfant-99 Study Group Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia 23(6):1073–1079. https://doi.org/10.1038/leu.2009.17

    Article  CAS  PubMed  Google Scholar 

  15. Kourlas PJ, Strout MP, Becknell B, Veronese ML, Croce CM, Theil KS, Krahe R, Ruutu T, Knuutila S, Bloomfield CD, Caligiuri MA (2000) Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proc Natl Acad Sci U S A 97(5):2145–2150. https://doi.org/10.1073/pnas.040569197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shih LY, Liang DC, Fu JF, Wu JH, Wang PN, Lin TL, Dunn P, Kuo MC, Tang TC, Lin TH, Lai CL (2006) Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL rearrangement. Leukemia 20(2):218–223. https://doi.org/10.1038/sj.leu.2404024

    Article  CAS  PubMed  Google Scholar 

  17. Liu YF, Wang BY, Zhang WN, Huang JY, Li BS, Zhang M, Jiang L, Li JF, Wang MJ, Dai YJ, Zhang ZG, Wang Q, Kong J, Chen B, Zhu YM, Weng XQ, Shen ZX, Li JM, Wang J, Yan XJ, Li Y, Liang YM, Liu L, Chen XQ, Zhang WG, Yan JS, Hu JD, Shen SH, Chen J, Gu LJ, Pei D, Li Y, Wu G, Zhou X, Ren RB, Cheng C, Yang JJ, Wang KK, Wang SY, Zhang J, Mi JQ, Pui CH, Tang JY, Chen Z, Chen SJ (2016) Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia. EBioMedicine 8:173–183. https://doi.org/10.1016/j.ebiom.2016.04.038

    Article  PubMed  PubMed Central  Google Scholar 

  18. Panagopoulos I, Andersen K, Eilert-Olsen M, Zeller B, Munthe-Kaas MC, Buechner J, Osnes LTN, Micci F, Heim S (2021) Therapy-induced deletion in 11q23 leading to fusion of KMT2A With ARHGEF12 and development of B lineage acute lymphoplastic leukemia in a child treated for acute myeloid leukemia caused by t(9;11)(p21;q23)/KMT2A-MLLT3. Cancer Genomics Proteomics 18(1):67–81. https://doi.org/10.21873/cgp.20242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jung HS, Lin F, Wolpaw A, Reilly AF, Margolskee E, Luo M, Wertheim GB, Li MM (2020) A Novel KMT2A-ARHGEF12 fusion gene identified in a high-grade B-cell lymphoma. Cancer Genet 246–247:41–43. https://doi.org/10.1016/j.cancergen.2020.08.003

    Article  CAS  PubMed  Google Scholar 

  20. Emerenciano M, Meyer C, Mansur MB, Marschalek R, Pombo-de-Oliveira MS (2013) Brazilian Collaborative Study Group of Infant Acute Leukaemia. The distribution of MLL breakpoints correlates with outcome in infant acute leukaemia. Br J Haematol 161(2):224–236. https://doi.org/10.1111/bjh.12250

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Centre Hospitalier de Versailles for editorial assistance.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

N.A wrote the manuscript; R.L helped writing the manuscript; F.M, V. R, J.O, M.S, R.K, F. R, F.G, V.E, I.L, L.C.A, M.D-A, P.L, C.M, R.M, P.R reviewed the manuscript and participate in the diagnosis/clinical management and C.T had the manuscript idea and reviewed the manuscript.

Corresponding author

Correspondence to Nada Assaf.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflict of interest.

Ethical approval

Patient’s informed consent was obtained for anonymous publication of his case. This study has been approved by the ethical committee “Comite ethique recherche clinique” at the centre hospitalier de Versailles, number 21–02.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assaf, N., Liévin, R., Merabet, F. et al. KMT2A-ARHGEF12, a therapy related fusion with poor prognosis. Mol Biol Rep 48, 7021–7027 (2021). https://doi.org/10.1007/s11033-021-06621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06621-5

Keywords

Navigation