Skip to main content
Log in

An in-depth analysis reveals two new genetic variants on 22q11.2 associated with vitiligo in the Chinese Han population

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Vitiligo is a complex disease in which patchy depigmentation is the result of an autoimmune-induced loss of melanocytes in affected regions. On the basis of a genome-wide linkage analysis of vitiligo in the Chinese Han population, we previously showed significant evidence of a linkage between 22q12 and vitiligo. Our aim in the current study was to identify vitiligo susceptibility variants within an expanded region of the 22q12 locus.

Methods and results

An in-depth analysis of the expanded region of the 22q12 locus was performed by imputation using a large GWAS dataset consisting of 1117 cases and 1701 controls. Eight nominal SNPs were selected and genotyped in an independent cohort of Chinese Han individuals (2069 patients and 1370 control individuals) by using the Sequenom MassArray iPLEX1 system. The data were analyzed with PLINK 1.07 software. The C allele of rs730669 located in ZDHHC8/RTN4R showed a strong association with vitiligo (P = 3.25 × 10–8, OR = 0.81). The C allele of rs4820338 located in VPREB1 and the A allele of rs2051582 (a SNP reported in our previous study) located in IL2RB showed a suggestive association with vitiligo (P = 1.04 × 10–5, OR = 0.86; P = 1.78 × 10–6, OR = 1.27). The three identified SNPs showed independent associations with vitiligo in a conditional logistic regression analysis (all P < 1.0 × 10–5; all D′ < 0.05 and r2 < 1.0 × 10–4).

Conclusions

The study reveals that two novel variants rs730669 (ZDHHC8/RTN4R) and rs4820338 (VPREB1) on 22q11.2 might confer susceptibility to vitiligo and affect disease subphenotypes. The presence of multiple independent variants emphasizes their important roles in the genetic pathogenesis of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Nunes DH, Esser LM (2011) Vitiligo epidemiological profile and the association with thyroid disease. An Bras Dermatol 86:241–248

    Article  PubMed  Google Scholar 

  2. Ezzedine K, Lim HW, Suzuki T, Katayama I, Hamzavi I, Lan CC, Goh BK, Anbar T, Silva de Castro C, Lee AY, Parsad D, van Geel N, Le Poole IC, Oiso N, Benzekri L, Spritz R, Gauthier Y, Hann SK, Picardo M, Taieb A (2012) Revised classification/nomenclature of vitiligo and related issues: the vitiligo global issues consensus conference. Pigment Cell Melanoma Res 25:E1-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang XJ, Chen JJ, Liu JB (2005) The genetic concept of vitiligo. J Dermatol Sci 39:137–146

    Article  CAS  PubMed  Google Scholar 

  4. Chen JJ, Huang W, Gui JP, Yang S, Zhou FS, Xiong QG, Wu HB, Cui Y, Gao M, Li W, Li JX, Yan KL, Yuan WT, Xu SJ, Liu JJ, Zhang XJ (2005) A novel linkage to generalized vitiligo on 4q13-q21 identified in a genomewide linkage analysis of Chinese families. Am J Hum Genet 76:1057–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liang Y, Yang S, Zhou Y, Gui J, Ren Y, Chen J, Fan X, Sun L, Xiao F, Gao M, Du W, Fang Q, Xu S, Huang W, Zhang X (2007) Evidence for two susceptibility loci on chromosomes 22q12 and 6p21-p22 in Chinese generalized vitiligo families. J Invest Dermatol 127:2552–2557

    Article  CAS  PubMed  Google Scholar 

  6. Jin Y, Birlea SA, Fain PR, Gowan K, Riccardi SL, Holland PJ, Mailloux CM, Sufit AJ, Hutton SM, Amadi-Myers A, Bennett DC, Wallace MR, McCormack WT, Kemp EH, Gawkrodger DJ, Weetman AP, Picardo M, Leone G, Taieb A, Jouary T, Ezzedine K, van Geel N, Lambert J, Overbeck A, Spritz RA (2010) Variant of TYR and autoimmunity susceptibility loci in generalized vitiligo. N Engl J Med 362:1686–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jin Y, Birlea SA, Fain PR, Mailloux CM, Riccardi SL, Gowan K, Holland PJ, Bennett DC, Wallace MR, McCormack WT, Kemp EH, Gawkrodger DJ, Weetman AP, Picardo M, Leone G, Taieb A, Jouary T, Ezzedine K, van Geel N, Lambert J, Overbeck A, Spritz RA (2010) Common variants in FOXP1 are associated with generalized vitiligo. Nat Genet 42:576–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jin Y, Birlea SA, Fain PR, Ferrara TM, Ben S, Riccardi SL, Cole JB, Gowan K, Holland PJ, Bennett DC, Luiten RM, Wolkerstorfer A, van der Veen JP, Hartmann A, Eichner S, Schuler G, van Geel N, Lambert J, Kemp EH, Gawkrodger DJ, Weetman AP, Taieb A, Jouary T, Ezzedine K, Wallace MR, McCormack WT, Picardo M, Leone G, Overbeck A, Silverberg NB, Spritz RA (2012) Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nat Genet 44:676–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jin Y, Andersen G, Yorgov D, Ferrara TM, Ben S, Brownson KM, Holland PJ, Birlea SA, Siebert J, Hartmann A, Lienert A, van Geel N, Lambert J, Luiten RM, Wolkerstorfer A, Wietze van der Veen JP, Bennett DC, Taieb A, Ezzedine K, Kemp EH, Gawkrodger DJ, Weetman AP, Koks S (2016) Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet 48:1418–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ben S, Jin Y, Santorico SA, Spritz RA (2018) Genome-wide association of PVT1 with vitiligo. J Invest Dermatol 138:1884–1886

    Article  CAS  PubMed  Google Scholar 

  11. Quan C, Ren YQ, Xiang LH, Sun LD, Xu AE, Gao XH, Chen HD, Pu XM, Wu RN, Liang CZ, Li JB, Gao TW, Zhang JZ, Wang XL, Wang J, Yang RY, Liang L, Yu JB, Zuo XB, Zhang SQ, Zhang SM, Chen G, Zheng XD, Li P, Zhu J, Li YW, Wei XD, Hong WS, Ye Y, Zhang Y, Wu WS, Cheng H, Dong PL, Hu DY, Li Y, Li M, Zhang X, Tang HY, Tang XF, Xu SX, He SM, Lv YM, Shen M, Jiang HQ, Wang Y, Li K, Kang XJ, Liu YQ, Sun L, Liu ZF, Xie SQ, Zhu CY, Xu Q, Gao JP, Hu WL, Ni C, Pan TM, Li Y, Yao S, He CF, Liu YS, Yu ZY, Yin XY, Zhang FY, Yang S, Zhou Y, Zhang XJ (2010) Genome-wide association study for vitiligo identifies susceptibility loci at 6q27 and the MHC. Nat Genet 42:614–618

    Article  CAS  PubMed  Google Scholar 

  12. Tang XF, Zhang Z, Hu DY, Xu AE, Zhou HS, Sun LD, Gao M, Gao TW, Gao XH, Chen HD, Xie HF, Tu CX, Hao F, Wu RN, Zhang FR, Liang L, Pu XM, Zhang JZ, Han JW, Pan GP, Wu JQ, Li K, Su MW, Du WD, Zhang WJ, Liu JJ, Xiang LH, Yang S, Zhou YW, Zhang XJ (2013) Association analyses identify three susceptibility loci for vitiligo in the Chinese Han population. J Invest Dermatol 133:403–410

    Article  CAS  PubMed  Google Scholar 

  13. Spritz RA, Andersen GH (2017) Genetics of vitiligo. Dermatol Clin 35:245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taieb A, Picardo M (2007) The definition and assessment of vitiligo: a consensus report of the vitiligo European task force. Pigment Cell Res 20:27–35

    Article  PubMed  Google Scholar 

  15. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491:56–65

    Article  PubMed  Google Scholar 

  16. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529

    Article  PubMed  PubMed Central  Google Scholar 

  17. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang J, Ferreira T, Morris AP, Medland SE, Madden PA, Heath AC, Martin NG, Montgomery GW, Weedon MN, Loos RJ, Frayling TM, McCarthy MI, Hirschhorn JN, Goddard ME, Visscher PM (2012) Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet 44(369–375):s361-363

    Google Scholar 

  19. Ota VK, Gadelha A, Assunção IB, Santoro ML, Christofolini DM, Bellucco FT, Santos-Filho AF, Ottoni GL, Lara DR, Mari JJ, Melaragno MI, Smith MA, Bressan RA, Belangero SI, Jackowski AP (2013) ZDHHC8 gene may play a role in cortical volumes of patients with schizophrenia. Schizophr Res 145:33–35

    Article  PubMed  Google Scholar 

  20. Xu M, St Clair D, He L (2010) Testing for genetic association between ZDHHC8 the gene locus and susceptibility to schizophrenia: an integrated analysis of multiple datasets. Am J Med Genet B 153b:1266–1275

    Article  Google Scholar 

  21. Yang Q, Zheng F, Hu Y, Yang Y, Li Y, Chen G, Wang W, He M, Zhou R, Ma Y, Xu D, Tian X, Gao X, Wang Q, Wang X (2018) ZDHHC8 critically regulates seizure susceptibility in epilepsy. Cell Death Dis 9:795

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shi X, Huang T, Wang J, Liang Y, Gu C, Xu Y, Sun J, Lu Y, Sun K, Chen S, Yu Y (2018) Next-generation sequencing identifies novel genes with rare variants in total anomalous pulmonary venous connection. EBioMedicine 38:217–227

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rani S, Bhardwaj S, Srivastava N, Sharma VL, Parsad D, Kumar R (2017) Senescence in the lesional fibroblasts of non-segmental vitiligo patients. Arch Dermatol Res 309:123–132

    Article  CAS  PubMed  Google Scholar 

  24. Kovacs D, Bastonini E, Ottaviani M, Cota C, Migliano E, Dell’Anna ML, Picardo M (2018) Vitiligo skin: exploring the dermal compartment. J Invest Dermatol 138:394–404

    Article  CAS  PubMed  Google Scholar 

  25. Kotb El-Sayed MI, Abd El-Ghany AA, Mohamed RR (2018) Neural and endocrinal pathobiochemistry of vitiligo: comparative study for a hypothesized mechanism. Front Endocrinol (Lausanne) 9:197

    Article  Google Scholar 

  26. Ebersole B, Petko J, Woll M, Murakami S, Sokolina K, Wong V, Stagljar I, Luscher B, Levenson R (2015) Effect of C-terminal S-palmitoylation on D2 dopamine receptor trafficking and stability. PLoS One 10:e140661

    Article  Google Scholar 

  27. Reimann E, Kingo K, Karelson M, Reemann P, Loite U, Keermann M, Abram K, Vasar E, Silm H, Koks S (2012) Expression profile of genes associated with the dopamine pathway in vitiligo skin biopsies and blood sera. Dermatology 224:168–176

    Article  CAS  PubMed  Google Scholar 

  28. Fournier AE, GrandPre T, Strittmatter SM (2001) Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409:341–346

    Article  CAS  PubMed  Google Scholar 

  29. Perlstein MD, Chohan MR, Coman IL, Antshel KM, Fremont WP, Gnirke MH, Kikinis Z, Middleton FA, Radoeva PD, Shenton ME, Kates WR (2014) White matter abnormalities in 22q11.2 deletion syndrome: preliminary associations with the Nogo-66 receptor gene and symptoms of psychosis. Schizophr Res 152:117–123

    Article  PubMed  Google Scholar 

  30. Thompson CA, Karelis J, Middleton FA, Gentile K, Coman IL, Radoeva PD, Mehta R, Fremont WP, Antshel KM, Faraone SV, Kates WR (2017) Associations between neurodevelopmental genes, neuroanatomy, and ultra high risk symptoms of psychosis in 22q11.2 deletion syndrome. Am J Med Genet B 174:295–314

    Article  CAS  Google Scholar 

  31. Pool M, Niino M, Rambaldi I, Robson K, Bar-Or A, Fournier AE (2009) Myelin regulates immune cell adhesion and motility. Exp Neurol 217:371–377

    Article  CAS  PubMed  Google Scholar 

  32. McDonald CL, Steinbach K, Kern F, Schweigreiter R, Martin R, Bandtlow CE, Reindl M (2011) Nogo receptor is involved in the adhesion of dendritic cells to myelin. J Neuroinflammation 8:113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yu R, Huang Y, Zhang X, Zhou Y (2012) Potential role of neurogenic inflammatory factors in the pathogenesis of vitiligo. J Cutan Med Surg 16:230–244

    Article  CAS  PubMed  Google Scholar 

  34. Zouali M (2014) Transcriptional and metabolic pre-B cell receptor-mediated checkpoints: implications for autoimmune diseases. Mol Immunol 62:315–320

    Article  CAS  PubMed  Google Scholar 

  35. Pelkonen P, Lahdenne P, Lantto R, Honkanen V (2002) Chronic arthritis associated with chromosome deletion 22q11.2 syndrome. J Rheumatol 29:2648–2650

    PubMed  Google Scholar 

  36. Aslam MM, John P, Fan KH, Bhatti A, Feingold E, Demirci FY, Kamboh MI (2020) Association of VPREB1 gene copy number variation and rheumatoid arthritis susceptibility. Disease Markers 2020:7189626

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mangum DS, Downie J, Mason CC, Jahromi MS, Joshi D, Rodic V, Müschen M, Meeker N, Trede N, Frazer JK, Zhou Y, Cheng C, Jeha S, Pui CH, Willman CL, Harvey RC, Hunger SP, Yang JJ, Barnette P, Mullighan CG, Miles RR, Schiffman JD (2014) VPREB1 deletions occur independent of lambda light chain rearrangement in childhood acute lymphoblastic leukemia. Leukemia 28:216–220

    Article  CAS  PubMed  Google Scholar 

  38. Fischer U, Forster M, Rinaldi A, Risch T, Sungalee S, Warnatz HJ, Bornhauser B, Gombert M, Kratsch C, Stutz AM, Sultan M, Tchinda J, Worth CL, Amstislavskiy V, Badarinarayan N, Baruchel A, Bartram T, Basso G, Canpolat C, Cario G, Cave H, Dakaj D, Delorenzi M, Dobay MP, Eckert C, Ellinghaus E, Eugster S, Frismantas V, Ginzel S, Haas OA, Heidenreich O, Hemmrich-Stanisak G, Hezaveh K, Holl JI, Hornhardt S, Husemann P, Kachroo P, Kratz CP, Te Kronnie G, Marovca B, Niggli F, McHardy AC, Moorman AV, Panzer-Grumayer R, Petersen BS, Raeder B, Ralser M, Rosenstiel P, Schafer D, Schrappe M, Schreiber S, Schutte M, Stade B, Thiele R, von der Weid N, Vora A, Zaliova M, Zhang L, Zichner T, Zimmermann M, Lehrach H, Borkhardt A, Bourquin JP, Franke A, Korbel JO, Stanulla M, Yaspo ML (2015) Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet 47:1020–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Raam L, Kaleviste E, Sunina M, Vaher H, Saare M, Prans E, Pihlap M, Abram K, Karelson M, Peterson P, Rebane A, Kisand K, Kingo K (2018) Lymphoid stress surveillance response contributes to vitiligo pathogenesis. Front Immunol 9:2707

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kemp EH, Waterman EA, Hawes BE, O’Neill K, Gottumukkala RV, Gawkrodger DJ, Weetman AP, Watson PF (2002) The melanin-concentrating hormone receptor 1, a novel target of autoantibody responses in vitiligo. J Clin Invest 109:923–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gavalas NG, Gottumukkala RV, Gawkrodger DJ, Watson PF, Weetman AP, Kemp EH (2009) Mapping of melanin-concentrating hormone receptor 1 B cell epitopes predicts two major binding sites for vitiligo patient autoantibodies. Exp Dermatol 18:454–463

    Article  CAS  PubMed  Google Scholar 

  42. Zhou M, Guan C, Lin F, Xu W, Fu L, Hong W, Wan Y, Xu A (2011) Immunodetection of the MCHR1 antibody in vitiligo patient sera. Int J Mol Med 27:725–729

    CAS  PubMed  Google Scholar 

  43. Tang J, Liu JL, Zhang C, Hu DY, He SM, Zuo XB, Wang PG, Sun LD, Zhang XJ, Yang S (2013) The association between a single nucleotide polymorphism rs11966200 in MHC region and clinical features of generalized vitiligo in Chinese Han population. Mol Biol Rep 40:4097–4100

    Article  CAS  PubMed  Google Scholar 

  44. Jin Y, Roberts GHL, Ferrara TM, Ben S, van Geel N, Wolkerstorfer A, Ezzedine K, Siebert J, Neff CP, Palmer BE, Santorico SA, Spritz RA (2019) Early-onset autoimmune vitiligo associated with an enhancer variant haplotype that upregulates class II HLA expression. Nat Commun 10:391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rajendiran KS, Rajappa M, Chandrashekar L, Thappa DM, Devaraju P (2020) Association analysis of tumor necrosis factor alpha promoter polymorphisms and vitiligo susceptibility in South Indian Tamils. Dermatology 236:554–564

    Article  CAS  PubMed  Google Scholar 

  46. Almasi-Nasrabadi M, Amoli MM, Robati RM, Rajabi F, Ghalamkarpour F, Gauthier Y (2019) CDH1 and DDR1 common variants confer risk to vitiligo and autoimmune comorbidities. Gene 700:17–22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks all individuals in this research.

Funding

This current study was funded by the general program of the National Natural Science Foundation of China (No. 81402591 and No. 81972926).

Author information

Authors and Affiliations

Authors

Contributions

FX and XT designed research; HC, LC, and BL were responsible for sample selection and genotyping; MC and XZ undertook data processing, statistical analysis and bioinformatics investigations; XT wrote the paper.

Corresponding author

Correspondence to Fengli Xiao.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest to declare.

Ethical approval

This study was approved by the Institutional Ethical Committee of Anhui Medical University.

Consent to participate

Respect for participants and Informed consent to participate in this research.

Consent to publish

All authors agree to publication in this Journal and it is not under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Cheng, H., Cheng, L. et al. An in-depth analysis reveals two new genetic variants on 22q11.2 associated with vitiligo in the Chinese Han population. Mol Biol Rep 48, 5955–5964 (2021). https://doi.org/10.1007/s11033-021-06597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06597-2

Keywords

Navigation