Skip to main content
Log in

The contrast agent 2,3,5-triiodobenzoic acid (TIBA) induces cell death in tumor cells through the generation of reactive oxygen species

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The 2,3,5-triiodobenzoic acid (TIBA) is an iodine contrast agent used for visualization of tissue in X-ray techniques. However, TIBA induces physiological complications like increase in oxygen reactive species (ROS), and consequently, contrast-induced nephropathies. TIBA’s antitumor activity was demonstrated in lung cancer, but the subcellular mechanisms involving its activity in tumor cells are still unknown. Thus, the objective of this work was evaluate whether the anti-tumor activity of TIBA involves ROS increase, in tumor lines of non-small cell lung cancer (H460), chronic myeloid leukemia (K562), and its cytotoxicity in normal renal epithelial (VERO). The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) assay was used for evaluation of cell viability, the H2DCFDA (cell-permeant 2′,7′-dichlorodihydrofluorescein diacetate) fluorescent probe to evaluate ROS induction, cell cycle analysis was performed using flow cytometry to measure cell death, and immunofluorescence with annexin/7-AAD (7-amino-actinomycin D), to assess the association of cell death with the ROS generation. TIBA decreases cell viability in a dose-dependent manner for the H460 and K562. However, VERO cells showed less response to the drug, with 70% viable cells after 72 h of treatment in the highest concentration of the drug. While the tumor cells with only 20% viable cells. Besides, tumor cells exhibited higher DNA fragmentation, compared to the renal line (VERO with 5% of fragmented DNA, H460 with 26%, and 56% in K562). Finally, TIBA-induced ROS increase and apoptosis in all lines, which is significantly decreased after treatment with the antioxidant N-acetyl-cysteine (NAC). These data demonstrate the relationship between the increased cellular oxidative stress and the anti-tumor action of the TIBA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available in the Figshare repository, https://doi.org/10.6084/m9.figshare.c.5329523.v2.

References

  1. Choi J, Park J, Cho H et al (2017) Sorafenib and 2,3,5-triiodobenzoic acid-loaded imageable microspheres for transarterial embolization of a liver tumor. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-00709-4

    Article  CAS  Google Scholar 

  2. Sturzu A, Vogel U, Gharabaghi A et al (2012) Cell nucleus directed 2,3,5-triiodobenzoic acid conjugates. Med Chem 5:385–391. https://doi.org/10.2174/157340609788681485

    Article  Google Scholar 

  3. Lee JY, Chung SJ, Cho HJ et al (2016) Iodinated hyaluronic acid oligomer-based nanoassemblies for tumor-targeted drug delivery and cancer imaging. Biomaterial 85:218–231. https://doi.org/10.1016/j.biomaterials.2016.01.060

    Article  CAS  Google Scholar 

  4. Spampinato MV, Abid A, Matheus MG (2017) Current radiographic iodinated contrast agents. Magn Reson Imaging Clin N Am 25:697–704. https://doi.org/10.1016/j.mric.2017.06.003

    Article  PubMed  Google Scholar 

  5. Boyd B, Zamora CA, Castillo M (2017) Managing adverse reactions to contrast agents. Magn Reson Imaging Clin N Am 25:737–742. https://doi.org/10.1016/j.mric.2017.06.008

    Article  PubMed  Google Scholar 

  6. Rear R, Bell RM, Hausenloy DJ (2016) Contrast-induced nephropathy following angiography and cardiac interventions. Heart 102:638–648. https://doi.org/10.1136/heartjnl-2014-306962

    Article  CAS  PubMed  Google Scholar 

  7. Rowe E, Rowe V, Biswas S, Mosher G et al (2016) Preclinical studies of a kidney safe iodinated contrast agent. J Neuroimaging 26:511–518. https://doi.org/10.1111/jon.12356

    Article  PubMed  PubMed Central  Google Scholar 

  8. Andreucci M, Faga T, Serra R et al (2017) Update on the renal toxicity of iodinated contrast drugs used in clinical medicine. Drug Healthc Patient Saf 9:25–37. https://doi.org/10.2147/DHPS.S122207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang X, Zhou J, Wang J et al (2020) Role of TLR4/MyD88/NF-κB signaling in the contrast-induced injury of renal tubular epithelial cells. Exp Ther Med. https://doi.org/10.3892/etm.2020.9243

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yang J, Peng Y, Tsai S et al (2018) The molecular mechanism of contrast-induced nephropathy (CIN) and its link to in vitro studies on iodinated contrast media (CM). BioMedicine 8:1–11. https://doi.org/10.1051/bmdcn/2018080101

    Article  PubMed  PubMed Central  Google Scholar 

  11. Moloney JN, Cotter TG (2018) ROS signalling in the biology of cancer. Semin Cell Dev Biol 80:50–64. https://doi.org/10.1016/j.semcdb.2017.05.023

    Article  CAS  PubMed  Google Scholar 

  12. Aggarwal V, Tuli H, Varol A et al (2019) Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules. https://doi.org/10.3390/biom9110735

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yang H, Villani R, Wang H et al (2018) The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res 37:1–10. https://doi.org/10.1186/s13046-018-0909-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dharmaraja AT (2017) Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria. J Med Chem 60:3221–3240. https://doi.org/10.1021/acs.jmedchem.6b01243

    Article  CAS  PubMed  Google Scholar 

  15. Carpenter A, Jones T, Lamprecht M et al (2006) Cell profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:10. https://doi.org/10.1186/gb-2006-7-10-r100

    Article  CAS  Google Scholar 

  16. Ferrão F, Lima A, Abreu J et al (2018) 2,3,5-Triiodobenzoic acid (TIBA), a diagnostic contrast, induces caspase dependent cell death through intrinsic pathway in NSCLC. Curr Topics Pharmacol 22:143–149

    Google Scholar 

  17. Zilkah S, Osband M, McCaffrey R (1981) Effect of inhibitors of plant cell division on mammalian tumor cells in vitro. Cancer Res 41:1879–1883

    CAS  PubMed  Google Scholar 

  18. Ozturk O, Eroglu H, Ustebay S et al (2018) An experimental study on the preventive effects of N-acetyl-cysteine and ozone treatment against contrast-induced nephropathy. Acta Cir Bras 33:508–517. https://doi.org/10.1590/s0102-865020180060000005

    Article  PubMed  Google Scholar 

  19. Alnahdi A, John A, Raza H (2019) N-acetyl cysteine attenuates oxidative stress and glutathione-dependent redox imbalance caused by high glucose/high palmitic acid treatment in pancreatic Rin-5F cells. PLoS ONE 14:1–20. https://doi.org/10.1371/journal.pone.0226696

    Article  CAS  Google Scholar 

  20. Ciarcia R, Damiano S, Puzio M (2016) Comparison of dasatinib, nilotinib, and imatinib in the treatment of chronic myeloid leukemia. J Cell Phisiol 3:680–687. https://doi.org/10.1002/jcp.25118

    Article  CAS  Google Scholar 

  21. Bazi A, Keramati M, Gholamin M (2016) Role of oxidative stress in modulating unfolded protein response activity in chronic myeloid leukemia cell line. Iran Biomed J 20:63–67. https://doi.org/10.7508/ibj.2016.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reczek C, Chandel N (2017) The two faces of reactive oxygen species in cancer. Annu Rev Cancer Biol 1:79–98. https://doi.org/10.1146/annurev-cancerbio-041916-065808

    Article  Google Scholar 

  23. Srinivas U, Tan B, Vellayappan B et al (2019) ROS and the DNA damage response in cancer. Redox Biol 25:2213–2317. https://doi.org/10.1016/j.redox.2018.101084

    Article  CAS  Google Scholar 

  24. Ratliff B, Abdulmahdi W, Pawar R et al (2016) Oxidant mechanisms in renal injury and disease. Antioxid Redox Signal 3:119–146. https://doi.org/10.1089/ars.2016.6665

    Article  CAS  Google Scholar 

  25. Fernandes J, Amorim G, Veiga T et al (2019) Allantoin reduces cell death induced by cisplatin: possible implications for tumor lysis syndrome management. J Biol Inorg Chem 24:547–562. https://doi.org/10.1007/s00775-019-01661-6

    Article  CAS  PubMed  Google Scholar 

  26. Kubo N, Noda S, Takahashi A (2015) Radiosensitizing effect of carboplatin and paclitaxel to carbon-ion beam irradiation in the non-small-cell lung cancer cell line H460. J Radiat Res 2:229–238. https://doi.org/10.1093/jrr/rru085

    Article  CAS  Google Scholar 

  27. Kim S, Yang YM, Choi E (2020) Comparative study of carboplatin dosing in lung cancer patients using the Calvert formula and four equations for estimating glomerular filtration rate. Pharm Soc Korea 2:156–165. https://doi.org/10.17480/psk.2020.64.2.156

    Article  CAS  Google Scholar 

  28. Saade C, Karout L, Khalil A et al (2021) Impact of various iodine concentrations of iohexol and iodixanol contrast media on image reconstruction techniques in a vascular-specific contrast media phantom: quantitative and qualitative image quality assessment. Card Radiol 126:221–230. https://doi.org/10.1007/s11547-020-01253-4

    Article  Google Scholar 

  29. Hsu J, Nieves L, Betzer O et al (2020) Nanoparticle contrast agents for X-ray imaging applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 12:1–26. https://doi.org/10.1002/wnan.1642

    Article  Google Scholar 

  30. Chen X, Song J, Chen X, Yang H (2019) X-ray-activated nanosystems for theranostic applications. Chem Soc Rev 48:3073–3101. https://doi.org/10.1039/C8CS00921J

    Article  CAS  PubMed  Google Scholar 

  31. Attia M, Anton N, Aksov R et al (2016) Biodistribution and toxicity of X-Ray iodinated contrast agent in nano-emulsions in function of their size. Pharm Res 33:603–614. https://doi.org/10.1007/s11095-015-1813-0

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the Research Support Foundation of the State of Rio de Janeiro (Grant Number E-26/201.037/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janaína Fernandes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Abreu, J.S.S., Fernandes, J. The contrast agent 2,3,5-triiodobenzoic acid (TIBA) induces cell death in tumor cells through the generation of reactive oxygen species. Mol Biol Rep 48, 5199–5207 (2021). https://doi.org/10.1007/s11033-021-06524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06524-5

Keywords

Navigation