Skip to main content
Log in

Taurine attenuates valproic acid-induced hepatotoxicity via modulation of RIPK1/RIPK3/MLKL-mediated necroptosis signaling in mice

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Valproic acid (VPA) is known as a common drug in seizure and bipolar disorders treatment. Hepatotoxicity is the most important complication of VPA. Taurine (Tau), an amino acid, has antioxidant effects. The present research was conducted to evaluate the protective mechanisms of Tau on VPA-induced liver injury, especially focusing on the necroptosis signaling pathway. The sixty-four male NMRI mice were divided into eight groups with eight animals per each. The experiment groups pretreated with Tau (250, 500, 1000 mg/kg) and necrostatine-1 (Nec-1, 1.8 mg/kg) and then VPA (500 mg/kg) was administered for 14 consecutive days. The extent of VPA-induced hepatotoxicity was confirmed by elevated ALP (alkaline phosphatase), AST (aspartate aminotransferase), ALT (alanine aminotransferase) levels, and histological changes as steatosis, accumulation of erythrocytes, and inflammation. Additionally, VPA significantly induced oxidative stress in the hepatic tissue by increasing ROS (reactive oxygen species) production and lipid peroxidation level along with decreasing GSH (glutathione). Hepatic TNF-α (tumor necrosis factor) level, mRNA and protein expression of RIPK1 (receptor-interacting protein kinase 1), RIPK3, and MLKL (mixed lineage kinase domain-like pseudokinase) were upregulated. Also, the phosphorylation of MLKL and RIPK3 increased in the VPA group. Tau could effectively reverse these events. Our data suggest which necroptosis has a key role in the toxicity of VPA through TNF-α–mediated RIPK1/RIPK3/MLKL signaling and oxidative stress. Our findings suggest that Tau protects the liver tissue against VPA toxicity via inhibiting necroptosis signaling pathway mediated by RIPK1/RIPK3/MLKL and suppressing oxidative stress, and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

VPA:

Valproic acid

TNF-α:

Tumor necrosis factor-alpha

MLKL:

Mixed lineage kinase domain-like pseudokinase

ROS:

Reactive oxygen species

RIPK1:

Receptor-interacting protein kinase 1

TNFR1:

TNF receptor 1

Tau:

Taurine

Nec-1:

Necrostatin-1

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

AST:

Aspartate aminotransferase

ALP:

Alkaline phosphatase

ALT:

Alanine aminotransferase

MDA:

Malondialdehyde

GSH:

Glutathione

DCFH-DA:

Dichlorodihydrofluorescein diacetate

DCF:

Dichlorofluorescein

H&E:

Hematoxylin and eosin

FADD:

Fas-associated death domain

References

  1. Mei S, Feng W, Zhu L, Yu Y, Yang W, Gao B, Wu X, Zhao Z, Fang F (2017) Genetic polymorphisms and valproic acid plasma concentration in children with epilepsy on valproic acid monotherapy. Seizure 51:22–26

    Article  PubMed  Google Scholar 

  2. Zhu M-M, Li H-L, Shi L-H, Chen X-P, Luo J, Zhang Z-L (2017) The pharmacogenomics of valproic acid. Am J Hum Genet 62(12):1009–1014

    Article  CAS  Google Scholar 

  3. Felker D, Lynn A, Wang S, Johnson DE (2014) Evidence for a potential protective effect of carnitine-pantothenic acid co-treatment on valproic acid-induced hepatotoxicity. Expert Rev Clin Pharmacol 7(2):211–218

    Article  CAS  PubMed  Google Scholar 

  4. Ghodke-Puranik Y, Thorn CF, Lamba JK, Leeder JS, Song W, Birnbaum AK, Altman RB, Klein TE (2013) Valproic acid pathway: pharmacokinetics and pharmacodynamics. Pharmacogenet Genom 23(4):236

    Article  CAS  Google Scholar 

  5. Schmid M, Freudenmann R, Keller F, Connemann B, Hiemke C, Gahr M, Kratzer W, Fuchs M, Schoenfeldt-Lecuona C (2013) Non-fatal and fatal liver failure associated with valproic acid. Pharmacopsychiatry 46(02):63–68

    CAS  PubMed  Google Scholar 

  6. Nazmy EA, El-Khouly OA, Atef H, Said E (2017) Sulforaphane protects against sodium valproate–induced acute liver injury. Can J Physiol Pharmacol 95(4):420–426

    Article  CAS  PubMed  Google Scholar 

  7. Chang TK, Abbott FS (2006) Oxidative stress as a mechanism of valproic acid-associated hepatotoxicity. Drug Metab Rev 38(4):627–639

    Article  CAS  PubMed  Google Scholar 

  8. Jin J, Xiong T, Hou X, Sun X, Liao J, Huang Z, Zhao Z (2014) Role of Nrf2 activation and NF-κB inhibition in valproic acid induced hepatotoxicity and in diammonium glycyrrhizinate induced protection in mice. Food Chem Toxicol 73:95–104

    Article  CAS  PubMed  Google Scholar 

  9. Linkermann A, Green DR (2014) Necroptosis. N Engl J Med 370(5):455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Seo M-J, Hong J-M, Kim S-J, Lee S-M (2017) Genipin protects d-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the necroptosis-mediated inflammasome signaling. Eur J Pharmacol 812:128–137

    Article  CAS  PubMed  Google Scholar 

  11. Schneider P, Tschopp J (2000) Apoptosis induced by death receptors. Pharmacochem Libr 31:281–286

    Article  Google Scholar 

  12. Lourenco R, Camilo M (2002) Taurine: a conditionally essential amino acid in humans? An overview in health and disease. Nutr Hosp 17(6):262–270

    CAS  PubMed  Google Scholar 

  13. Santangelo F (2002) The regulation of sulphurated amino acid junctionsFact or fiction in the field of inflammation? Amino Acids 23(4):359–365

    Article  CAS  PubMed  Google Scholar 

  14. Kim C, Cha Y-N (2014) Taurine chloramine produced from taurine under inflammation provides anti-inflammatory and cytoprotective effects. Amino Acids 46(1):89–100

    Article  CAS  PubMed  Google Scholar 

  15. Devi SL, Anuradha C (2010) Mitochondrial damage, cytotoxicity and apoptosis in iron-potentiated alcoholic liver fibrosis: amelioration by taurine. Amino Acids 38(3):869–879

    Article  Google Scholar 

  16. Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46(1):7–20

    Article  CAS  PubMed  Google Scholar 

  17. Karamikhah R, Jamshidzadeh A, Azarpira N, Saeedi A, Heidari R (2015) Propylthiouracil-induced liver injury in mice and the protective role of taurine. Pharm Sci 21(2):94–101

    Article  Google Scholar 

  18. Saleh AAS, Shahin MI, Kelada NA (2017) Hepatoprotective effect of taurine and coenzyme Q10 and their combination against acrylamide-induced oxidative stress in rats. Trop J Pharm Res 16(8):1849–1855

    Article  CAS  Google Scholar 

  19. Kim S-J, Lee S-M (2017) Necrostatin-1 protects against D-Galactosamine and lipopolysaccharide-induced hepatic injury by preventing TLR4 and RAGE signaling. Inflammation 40(6):1912–1923

    Article  CAS  PubMed  Google Scholar 

  20. Najafi N, Jamshidzadeh A, Fallahzadeh H, Omidi M, Abdoli N, Najibi A, Azarpira N, Heidari R, Niknahad H (2017) Valproic acid-induced hepatotoxicity and the protective role of thiol reductants. Trends Pharm Sci 3(2):63–70

    CAS  Google Scholar 

  21. Tong V, Teng XW, Chang TK, Abbott FS (2005) Valproic acid I: time course of lipid peroxidation biomarkers, liver toxicity, and valproic acid metabolite levels in rats. Toxicol Sci 86(2):427–435

    Article  CAS  PubMed  Google Scholar 

  22. Sokmen BB, Tunali S, Yanardag R (2012) Effects of vitamin U (S-methyl methionine sulphonium chloride) on valproic acid induced liver injury in rats. Food Chem Toxicol 50(10):3562–3566

    Article  CAS  PubMed  Google Scholar 

  23. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  24. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  25. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  Google Scholar 

  26. Shaaban AA, El-Agamy DS (2017) Cytoprotective effects of diallyl trisulfide against valproate-induced hepatotoxicity: new anticonvulsant strategy. Naunyn Schmiedebergs Arch Pharmacol 390(9):919–928

    Article  CAS  PubMed  Google Scholar 

  27. Al-Amoudi WM (2017) Protective effects of fennel oil extract against sodium valproate-induced hepatorenal damage in albino rats. Saudi J Biol Sci 24(4):915–924

    Article  CAS  PubMed  Google Scholar 

  28. Abd El Latif EA, Sanad RA, Abdallah OM, Ismail YM (2015) Protective effect of Nigella sativa against cerebral ischemia and sodium valproate-induced hepatotoxicity. Benha Med J 32(1):41

    Article  Google Scholar 

  29. Nagai K, Fukuno S, Oda A, Konishi H (2016) Protective effects of taurine on doxorubicin-induced acute hepatotoxicity through suppression of oxidative stress and apoptotic responses. Anticancer Drugs 27(1):17–23

    Article  CAS  PubMed  Google Scholar 

  30. Abdel-Moneim AM, Al-Kahtani MA, El-Kersh MA, Al-Omair MA (2015) Free radical-scavenging, anti-inflammatory/anti-fibrotic and hepatoprotective actions of taurine and silymarin against CCl4 induced rat liver damage. PLoS ONE 10(12):e0144509

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rashid K, Das J, Sil PC (2013) Taurine ameliorate alloxan induced oxidative stress and intrinsic apoptotic pathway in the hepatic tissue of diabetic rats. Food Chem Toxicol 51:317–329

    Article  CAS  PubMed  Google Scholar 

  32. Wu G, Yang J, Lv H, Jing W, Zhou J, Feng Y, Lin S, Yang Q, Hu J (2018) Taurine prevents ethanol-induced apoptosis mediated by mitochondrial or death receptor pathways in liver cells. Amino Acids 50(7):863–875

    Article  CAS  PubMed  Google Scholar 

  33. Abdelkader NF, Elyamany M, Gad AM, Assaf N, Fawzy HM, Elesawy WH (2020) Ellagic acid attenuates liver toxicity induced by valproic acid in rats. J Pharmacol Sci 143(1):23–29

    Article  CAS  PubMed  Google Scholar 

  34. Oztopuz O, Turkon H, Buyuk B, Coskun O, Sehitoglu MH, Ovali MA, Uzun M (2020) Melatonin ameliorates sodium valproate-induced hepatotoxicity in rats. Mol Bio Rep 47(1):317–325

    Article  CAS  Google Scholar 

  35. Zhang F, Mao Y, Qiao H, Jiang H, Zhao H, Chen X, Tong L, Sun X (2010) Protective effects of taurine against endotoxin-induced acute liver injury after hepatic ischemia reperfusion. Amino Acids 38(1):237–245

    Article  CAS  PubMed  Google Scholar 

  36. Antosiewicz J, Ziolkowski W, Kaczor JJ, Herman-Antosiewicz A (2007) Tumor necrosis factor-α-induced reactive oxygen species formation is mediated by JNK1-dependent ferritin degradation and elevation of labile iron pool. Free Radic Biol Med 43(2):265–270

    Article  CAS  PubMed  Google Scholar 

  37. Ventura J-J, Cogswell P, Flavell RA, Baldwin AS, Davis RJ (2004) JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 18(23):2905–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu Y, Liu T, Lei T, Zhang D, Du S, Girani L, Qi D, Lin C, Tong R, Wang Y (2019) RIP1/RIP3-regulated necroptosis as a target for multifaceted disease therapy. Int J Mol Med 44(3):771–786

    PubMed  PubMed Central  Google Scholar 

  39. Shirley S, Morizot A, Micheau O (2011) Regulating TRAIL receptor-induced cell death at the membrane: a deadly discussion. Recent Pat Anticancer Drug Discov 6(3):311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwabe RF, Luedde T (2018) Apoptosis and necroptosis in the liver: a matter of life and death. Nat Rev Gastroenterol 15(12):738–752

    Article  Google Scholar 

  41. Lee EW, Seo JH, Jeong MH, Lee SS, Song JW (2014) Invited mini review: the roles of FADD in extrinsic apoptosis and necroptosis. BMB Rep 45(9):496–508

    Article  Google Scholar 

  42. Duprez L, Takahashi N, Van Hauwermeiren F, Vandendriessche B, Goossens V, Berghe TV, Declercq W, Libert C, Cauwels A, Vandenabeele P (2011) RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35(6):908–918

    Article  CAS  Google Scholar 

  43. Ramachandran A, McGill MR, Xie Y, Ni HM, Ding WX, Jaeschke H (2013) Receptor interacting protein kinase 3 is a critical early mediator of acetaminophen-induced hepatocyte necrosis in mice. Hepatology 58(6):2099–2108

    Article  CAS  PubMed  Google Scholar 

  44. Ni H-M, Chao X, Kaseff J, Deng F, Wang S, Shi Y-H, Li T, Ding WX, Jaeschke H (2019) Receptor-interacting serine/threonine-protein kinase 3 (RIPK3)–mixed lineage kinase domain-like protein (MLKL)–mediated necroptosis contributes to ischemia-reperfusion injury of steatotic livers. Am J Pathol 189(7):1363–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bollino D, Balan I, Aurelian L (2015) Valproic acid induces neuronal cell death through a novel calpain-dependent necroptosis pathway. J Neurochem 133(2):174–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou Y, Dai W, Lin C, Wang F, He L, Shen M, Chen P, Wang C, Lu J, Xu L, Xu X (2013) Protective effects of necrostatin-1 against concanavalin A-induced acute hepatic injury in mice. Mediat Inflamm 2013:706156

    Article  Google Scholar 

  47. Lin B, Jin Z, Chen X, Zhao L, Weng C, Chen B, Tang Y, Lin L (2020) Necrostatin-1 protects mice from acute lung injury by suppressing necroptosis and reactive oxygen species. Mol Med Rep 21(5):2171–2181

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Takemoto K, Hatano E, Iwaisako K, Takeiri M, Noma N, Ohmae S, Toriguchi K, Tanabe K, Tanaka H, Seo S, Taura K (2014) Necrostatin-1 protects against reactive oxygen species (ROS)-induced hepatotoxicity in acetaminophen-induced acute liver failure. FEBS Open Bio 4:777–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin CY, Chang TW, Hsieh WH, Hung MC, Lin IH, Lai SC, Tzeng YJ (2016) Simultaneous induction of apoptosis and necroptosis by Tanshinone IIA in human hepatocellular carcinoma HepG2 cells. Cell Death Discov 2(1):1–1

    Article  CAS  Google Scholar 

  50. Li S, Yang L, Dong G, Wang X (2017) Taurine protects mouse liver against arsenic-induced apoptosis through JNK pathway. Adv Exp Med Biol 10:855–862

    Article  Google Scholar 

Download references

Acknowledgements

None.

Funding

This work is related to the thesis of HA and was granted (MPRC-9721) by the Medicinal Plant Research Center of Ahvaz Jundishapur University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadis Alidadi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 736 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodayar, M.J., Kalantari, H., Khorsandi, L. et al. Taurine attenuates valproic acid-induced hepatotoxicity via modulation of RIPK1/RIPK3/MLKL-mediated necroptosis signaling in mice. Mol Biol Rep 48, 4153–4162 (2021). https://doi.org/10.1007/s11033-021-06428-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06428-4

Keywords

Navigation