Skip to main content
Log in

Identification patterns of Trichoderma strains using morphological characteristics, phylogenetic analyses and lignocellulolytic activities

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Trichoderma is a genus of soil-borne fungus with an abundance of reports of its economic importance in the agriculture industry. Thus, the correct identification of Trichoderma species is necessary for its commercial purposes. Globally, Trichoderma species are routinely identified from micro-morphological descriptions which can be tedious and prone to errors. Thus, we emphasize that the accurate identification of Trichoderma strains requires a three-pronged approach i.e. based on its morphological characteristics, multilocus gene sequences of the rDNA [internal transcribed spacer (ITS) 1 and 2 regions], translation elongation factor 1-α (TEF-1α), Calmodulin (CAL) and its lignocellulolytic activities. We used this approach to identify a total of 53 Trichoderma strains which were isolated from a wet paddy field located at Tuaran, Sabah, Malaysia. The 53 strains were positively identified as belonging to three Trichoderma species, namely T. asperellum (43 strains), T. harzianum (9 strains), and T. reesei (one strain) on the basis of its morphological characteristics and multilocus gene sequences. Phylogenetic trees constructed based on the UPGMA method of the ITS 1 and 2 regions of the rDNA, TEF-1α and CAL revealed three distinct groups with the T. asperellum, T. harzianum and T. reesei strains placed under the section of Trichoderma, Pachybasium and Longibrachiatum, respectively. In addition, the lignocellulolytic activities of the isolates were measured based on the diameters of the halo zones produced when degrading cellulose, lignin, and starch, respectively. This diagnostic assay can be used to identify Trichoderma as it produces polyphenol oxidase when Tannic Acid Media is used for the lignin test, endoglucanases when Jensen media is used for cellulose, and it hydrolyzes starch to glucose when the modified Melin–Nokrans media is used for the starch test. Accurate identification of Trichoderma species is needed as these strains can potentially be used as a biocontrol agent to prevent diseases and to increase yield in agriculture crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anees M, Tronsmo A, Edel-Hermann V, Hjeljord GL, Hẻraud C, Steinberg C (2010) Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol 114:691–701. https://doi.org/10.1016/j.funbio.2010.05.007

    Article  PubMed  Google Scholar 

  2. Babu AG, Shim J, Bang KS, Shea PJ, Oh BT (2014) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manag 132:129–134. https://doi.org/10.1016/j.jenvman.2013.10.009

    Article  CAS  Google Scholar 

  3. Filizola PRB, Luna MAC, de Souza AF, Coelho IL, Laranjeira D, Campos-Takaki GM (2019) Biodiversity and phylogeny of novel Trichoderma isolates from mangrove sediments and potential of biocontrol against Fusarium strains. Microb Cell Fact 18:89. https://doi.org/10.1186/s12934-019-1108-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Druzhinina I, Kubicek CP (2005) Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? J Zhejiang Univ Sci B 6(2):100–112. https://doi.org/10.1631/jzus.2005.B0100

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hewedy OA, El-Zanaty AM, Fahmi AI (2020) Screening and identification of novel cellulolytic Trichoderma species from Egyptian habitats. Biotechnologia 101(2):117–133. https://doi.org/10.5114/bta.2020.94771

    Article  CAS  Google Scholar 

  6. Chaverri P, Samuels GJ (2013) Evolution of habitat preference and nutrition mode in a cosmopolitan fungal genus with evidence of interkingdom host jumps and major shifts in ecology. Evolution 67:2823–2837. https://doi.org/10.1111/evo.12169

    Article  PubMed  Google Scholar 

  7. Roughanian M, Zafari D, Amini J, Abdollahzadeh J (2013) Identification of Trichoderma spp. from West Iran. Indian Phytopathol 66:186–189

    Google Scholar 

  8. Atanasova L, Druzhinina IS, Jaklitsch WM (2013) Two hundreds Trichoderma species species recognized on the basis of molecular phylogeny. In: Mukherjee M, Schmoll M (eds) Trichoderma: biology and applications. CABI, Wallingford, pp 10–42

    Chapter  Google Scholar 

  9. Devi P, Prabhakaran N, Kamil D, Pandey P (2011) Development of genus specific rDNA based marker for detection of Trichoderma species. J Mycol Plant Pathol 41:600–604

    CAS  Google Scholar 

  10. Haque Z, Iqbal MS, Ahmad A, Khan MS, Prakash J (2020) Molecular characterization of Trichoderma spp. isolates by internal transcribed spacer (ITS) region sequencing technique and its use as a biocontrol agent. Open Biotechnol J 14:70–77. https://doi.org/10.2174/1874070702014010070

    Article  CAS  Google Scholar 

  11. Pereira F, Carneiro J, Amorim A (2008) Identification of species with DNA-based technology: current progress and challenges. Recent Pat DNA Gene Seq 2:187–199. https://doi.org/10.2174/187221508786241738

    Article  CAS  PubMed  Google Scholar 

  12. O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc Natl Acad Sci USA 95(5):2044–2049. https://doi.org/10.1073/pnas.95.5.2044

    Article  PubMed  Google Scholar 

  13. Lieckfeldt E, Cavignac Y, Fekete C, Börner T (2000) Endochitinase gene-based phylogenetic analysis of Trichoderma. Microbiol Res 155(1):7–15. https://doi.org/10.1016/S0944-5013(00)80016-6

    Article  CAS  PubMed  Google Scholar 

  14. Roe AD, Rice AV, Bromilow SE, Cooke JE, Sperling FA (2010) Multilocus species identification and fungal DNA barcoding: insights from blue stain fungal symbionts of the mountain pine beetle. Mol Ecol Resour 10(6):946–959. https://doi.org/10.1111/j.1755-0998.2010.02844.x

    Article  CAS  PubMed  Google Scholar 

  15. Kindermann J, El-Ayouti Y, Samuels GJ, Kubicek CP (1998) Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA clade. Fungal Genet Biol 24:298–309. https://doi.org/10.1006/fgbi.1998.1049

    Article  CAS  PubMed  Google Scholar 

  16. Kullnig-Gradinger CM, Szakács G, Kubicek CP (2002) Phylogeny and evolution of the genus Trichoderma: a multigene approach. Mycol Res 106:757–767. https://doi.org/10.1017/S0953756202006172

    Article  CAS  Google Scholar 

  17. Kamala Th, Indira Devi S, Sharma KC, Kennedy K (2015) Phylogeny and taxonomical investigation of Trichoderma spp from Indo-Burma biodiversity hot spot region with special reference to Manipur. BioMed Res Int 2015:1–21. https://doi.org/10.1155/2015/285261

    Article  Google Scholar 

  18. Mohamad Zainuddin NAI, Faridah A (2008) Disease suppression in ganoderma treated with Trichoderma harzianum. Plant Protect Sci 44:101–107

    Article  Google Scholar 

  19. Mtui GYS (2012) Lignocellulolytic enzymes from tropical fungi: types, substrates and applications. Sci Res Essays 7(15):1544–1555

    CAS  Google Scholar 

  20. Khelil O, Cheba B (2014) Thermophilic cellulolytic microorganism from Western Algerian sources: promising isolates for cellulosic biomass recycling. Procedia Technol 12:519–528. https://doi.org/10.1016/j.protcy.2013.12.524

    Article  Google Scholar 

  21. Rubeena M, Neethu K, Sajith S, Sreedevi S, Priji P, Unni KN, Josh MKS, Jisha VN, Pradeep S, Benjamin S (2013) Lignocellulolytic activities of a novel strain of Trichoderma harzianum. Adv Biosci Biotechnol 4:214–221. https://doi.org/10.4236/abb.2013.42030

    Article  CAS  Google Scholar 

  22. Sood M, Kapoor D, Kumar V, Sheteiwy MS, Ramakrishnan M, Landi M, Araniti F, Sharma A (2020) Trichoderma: the “secrets” of a multitalented biocontrol agent. Plants 9:762. https://doi.org/10.3390/plants9060762

    Article  CAS  Google Scholar 

  23. Siddiquee S, Umi Kalsom Y, Kausar H, Sarwar J (2009) In vitro studies on the potential Trichoderma harzianum for antagonistic properties against Ganoderma boninense. J Food Agric Environ 7(3 & 4):970–976

    Google Scholar 

  24. Jiang Y, Wang JL, Chen J, Mao LJ, Feng XX, Zhang CL, Lin FC (2016) Trichoderma biodiversity of agricultural fields in East China reveals a gradient distribution of species. PLoS ONE 11:1–14. https://doi.org/10.1371/journal.pone.0160613

    Article  CAS  Google Scholar 

  25. Kubicek CP, Steindorff AS, Chenthamara K, Manganiello G, Henrissat B, Jian ZJ, Cai F, Kopchinskiy AG, Kubicek EM, Kuo A, Baroncelli R, Sarrocco S, Noronha EF, Vannacci G, Shen Q, Grigoriev IV, Druzhinina IS (2019) Evolution and comparative genomics of the most common Trichoderma species. BMC Genom 20:485. https://doi.org/10.1186/s12864-019-5680-7

    Article  CAS  Google Scholar 

  26. O’Donnell K (1992) Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycetes Fusarium sambucinum (Gibberella pulicaris). Curr Genet 22:213–220. https://doi.org/10.1007/BF00351728

    Article  PubMed  Google Scholar 

  27. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. Elsevier, Amsterdam, pp 315–322

    Google Scholar 

  28. O’Donnell K, Cigelnik E, Nirenberg HI (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493. https://doi.org/10.1080/00275514.1998.12026933

    Article  Google Scholar 

  29. Abd-Elsalam KA, Almohimeed I, Moslem MA, Bahkali AH (2010) M13-microsatellite PCR and rDNA sequence markers for identification of Trichoderma (Hypocreaceae) species in Saudi Arabian soil. Genet Mol Res 9:2016–2024. https://doi.org/10.4238/vol9-4gmr908

    Article  CAS  PubMed  Google Scholar 

  30. Druzhinina IS, Komoń-Źelazowska M, Ismaiel A, Jaklitsch W, Mullaw T, Samuels GJ, Kubicek CP (2012) Molecular phylogeny and species delimination in the section Longibrachiatum of Trichoderma. Fungal Genet Biol 49:358–368. https://doi.org/10.1016/j.fgb.2012.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mukhlis SHM, Sariah M, Ismail MR, Habib SH, Kausar H (2013) Potential lignocellulolytic Trichoderma for bioconversion of oil palm empty fruit bunches. Aust J Crop Sci 7:425–431

    CAS  Google Scholar 

  32. Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM (2014) Screening of candidate regulators for cellulose and hemicellulose production in Trichoderma reesei and identification of a factor essential for cellulose production. Biotecnol Biofuels 7:2–21. https://doi.org/10.1186/1754-6834-7-14

    Article  CAS  Google Scholar 

  33. Blaszczyk L, Popiel D, Chelkowski J, Koczyk G, Samuels GJ, Sobieralski K, Siwulski M (2011) Species diversity of Trichoderma in Poland. J Appl Genet 52:233–243. https://doi.org/10.1007/s13353-011-0039-z

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gherbawy YA, Hussein NA, Al-Qurashi AA (2014) Molecular characterization of Trichoderma populations isolated from soil of Taif city, Saudi Arabia. Int J Curr Microbiol Appl Sci 3:1059–1071

    Google Scholar 

  35. Hermosa MR, Grondona I, Iturriaga EA, Diaz-Minguez JM, Castro C (2010) Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl Environ Microbiol 66:1890–1898. https://doi.org/10.1128/AEM.66.5.1890-1898.2000

    Article  Google Scholar 

  36. Inglis PW, Mello SCM, Martins I, Silva JBT, Macêdo K, Sifuentes DN, Valadares-Inglis MC (2020) Trichoderma from Brazilian garlic and onion crop soils and description of two new species: Trichoderma azevedoi and Trichoderma peberdyi. PLoS ONE 15:e0228485. https://doi.org/10.1371/journal.pone.0228485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hiba A, Laid D, Omrane Z, Ahmed S, Philippe T (2019) Production of Trichoderma harzianum(127a and 127b) spores by fermentation (LF and SSF). Int J Innov App Agric Res 3:376–384. https://doi.org/10.29329/ijiaar.2019.206.3

    Article  Google Scholar 

  38. Sun RY, Liu ZC, Fu K, Fan L, Chen J (2012) Trichoderma biodiversity in China. J Appl Genet 53:343–354. https://doi.org/10.1007/s13353-012-0093-1

    Article  CAS  PubMed  Google Scholar 

  39. López-Quintero C, Atanasova L, Esperanza A, Franco-Molano AE, Gams W, Komon-Zelazowska M, Theelen B, Müller WH, Boekhout T, Druzhinina IS (2013) DNA barcoding survey of Trichoderma diversity in soil and litter of the Colombian lowland Amazonian rainforest reveals Trichoderma strigosellum sp. nov. and other species. Antonie Van Leeuwenhoek 104:1–19. https://doi.org/10.1007/s10482-013-9975-4

    Article  CAS  Google Scholar 

  40. Jaklitsch WM, Voglmayr H (2015) Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and Macaronesia. Stud Mycol 80:1–87. https://doi.org/10.1016/j.simyco.2014.11.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Naeimi S, Khodaparast SA, Javan Nikkhah M, Kredics L (2011) Species pattern and phylogenetic relationships of Trichoderma strains in rice fields of Southern Caspian Sea Iran. Cereal Res Commun 39:560–568. https://doi.org/10.1556/CRC.39.2011.4.11

    Article  Google Scholar 

  42. Cardoso-Lopes FA, Steindorff AS, Geraldine AM, Brandão RS, Monteiro VN, Lobo Junior M, Caelho ASG, Ulhoa CJ, Silva RN (2012) Biochemical and metabolic profiles of Trichoderma strains isolated from common bean crops in the Brazilian cerrado, and potential antagonism against Sclerotinia sclerotiorum. Fungal Biol 116:815–824. https://doi.org/10.1016/j.funbio.2012.04.015

    Article  CAS  Google Scholar 

  43. Atanasova L, Jaklitsch WM, Komoń-Zelazowska M, Kubicek CP, Druzhinina IS (2010) Clonal species Trichoderma parareesei sp. nov. likely resembles the ancestor of the cellulose producer Hypocrea jecorina/T. reesei. Appl Environ Microbiol 76(21):7259–7267. https://doi.org/10.1128/AEM.01184-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saroj DB, Dengeti SN, Aher S, Gupta K (2015) A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei. World J Microbiol Biotechnol 31:995–999. https://doi.org/10.1007/s11274-015-1839-9

    Article  CAS  PubMed  Google Scholar 

  45. Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ (2015) Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107:14–147. https://doi.org/10.3852/14-147

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Universiti Malaysia Sabah for providing financial support under the UMS Great Grant Scheme (GUG0276-2/2018).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation, AA, SuS, SS, and KV; investigation, SAS, NFHN; resources, AA; writing—original draft preparation, AA; writing—review and editing, SuS, SS, NFHN and KV; supervision, SS, and KV. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shafiquzzaman Siddiquee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asis, A., Shahriar, S.A., Naher, L. et al. Identification patterns of Trichoderma strains using morphological characteristics, phylogenetic analyses and lignocellulolytic activities. Mol Biol Rep 48, 3285–3301 (2021). https://doi.org/10.1007/s11033-021-06321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06321-0

Keywords

Navigation