Skip to main content
Log in

Lack of association between TREM2 rs75932628 variant and amyotrophic lateral sclerosis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Amyotrophic lateral sclerosis (ALS) is a multifactorial neurodegenerative disease. Inflammatory processes are among the mechanisms that are implicated in ALS pathogenesis. The TREM2 rs75932628 T variant may influence the regulatory effect of TREM2 on inflammation. Studies regarding the role of the rs75932628 variant in ALS have yielded inconsistent results, so far. To assess the role of TREM2 rs75932628 on ALS risk. We genotyped 155 patients with sporadic ALS and 155 healthy controls for TREM2 rs75932628. We also merged and meta-analyzed our data with data from previous studies (with a total of 7524 ALS cases and 14,675 controls), regarding TREM2 rs75932628 and ALS. No ALS or healthy subjects carried the TREM2 rs75932628-T variant. Results from meta-analyses (overall approach and sensitivity analyses) yielded no significant results for possible connection between TREM2 rs75932628-T variant and ALS. Based on our results, TREM2 rs75932628 does not seem to play a determining role to the pathophysiology of ALS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Picher-Martel V, Valdmanis PN, Gould PV, Julien JP, Dupré N (2016) From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol Commun 4(1):70. https://doi.org/10.1186/s40478-016-0340-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Al-Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9(11):617–628. https://doi.org/10.1038/nrneurol.2013.203

    Article  CAS  PubMed  Google Scholar 

  3. van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH (2017) Amyotrophic lateral sclerosis. Lancet 390(10107):2084–2098. https://doi.org/10.1016/S0140-6736(17)31287-4

    Article  PubMed  Google Scholar 

  4. Swinnen B, Robberecht W (2014) The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol 10(11):661–670. https://doi.org/10.1038/nrneurol.2014.184

    Article  PubMed  Google Scholar 

  5. Liscic RM, Alberici A, Cairns NJ, Romano M, Buratti E (2020) From basic research to the clinic: innovative therapies for ALS and FTD in the pipeline. Mol Neurodegener 15(1):31. https://doi.org/10.1186/s13024-020-00373-9

    Article  PubMed  PubMed Central  Google Scholar 

  6. van den Bos MAJ, Geevasinga N, Higashihara M, Menon P, Vucic S (2019) Pathophysiology and diagnosis of ALS: insights from advances in neurophysiological techniques. Int J Mol Sci 20(11):2818. https://doi.org/10.3390/ijms20112818

    Article  CAS  PubMed Central  Google Scholar 

  7. Dardiotis E, Aloizou AM, Siokas V, Patrinos GP, Deretzi G, Mitsias P, Aschner M, Tsatsakis A (2018) The role of microRNAs in patients with amyotrophic lateral sclerosis. J Mol Neurosci 66(4):617–628. https://doi.org/10.1007/s12031-018-1204-1

    Article  CAS  PubMed  Google Scholar 

  8. Bennett SA, Tanaz R, Cobos SN, Torrente MP (2019) Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease. Transl Res 204:19–30. https://doi.org/10.1016/j.trsl.2018.10.002

    Article  CAS  PubMed  Google Scholar 

  9. Taylor JP, Brown RH Jr, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539(7628):197–206. https://doi.org/10.1038/nature20413

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377(2):162–172. https://doi.org/10.1056/NEJMra1603471

    Article  CAS  PubMed  Google Scholar 

  11. Al-Chalabi A, Lewis CM (2011) Modelling the effects of penetrance and family size on rates of sporadic and familial disease. Hum Hered 71(4):281–288. https://doi.org/10.1159/000330167

    Article  PubMed  Google Scholar 

  12. van Rheenen W, Shatunov A, Dekker AM, McLaughlin RL, Diekstra FP, Pulit SL, van der Spek RA, Võsa U, de Jong S, Robinson MR, Yang J, Fogh I, van Doormaal PT, Tazelaar GH, Koppers M, Blokhuis AM, Sproviero W, Jones AR, Kenna KP, van Eijk KR, Harschnitz O, Schellevis RD, Brands WJ, Medic J, Menelaou A, Vajda A, Ticozzi N, Lin K, Rogelj B, Vrabec K, Ravnik-Glavač M, Koritnik B, Zidar J, Leonardis L, Grošelj LD, Millecamps S, Salachas F, Meininger V, de Carvalho M, Pinto S, Mora JS, Rojas-García R, Polak M, Chandran S, Colville S, Swingler R, Morrison KE, Shaw PJ, Hardy J, Orrell RW, Pittman A, Sidle K, Fratta P, Malaspina A, Topp S, Petri S, Abdulla S, Drepper C, Sendtner M, Meyer T, Ophoff RA, Staats KA, Wiedau-Pazos M, Lomen-Hoerth C, Van Deerlin VM, Trojanowski JQ, Elman L, McCluskey L, Basak AN, Tunca C, Hamzeiy H, Parman Y, Meitinger T, Lichtner P, Radivojkov-Blagojevic M, Andres CR, Maurel C, Bensimon G, Landwehrmeyer B, Brice A, Payan CA, Saker-Delye S, Dürr A, Wood NW, Tittmann L, Lieb W, Franke A, Rietschel M, Cichon S, Nöthen MM, Amouyel P, Tzourio C, Dartigues JF, Uitterlinden AG, Rivadeneira F, Estrada K, Hofman A, Curtis C, Blauw HM, van der Kooi AJ, de Visser M, Goris A, Weber M, Shaw CE, Smith BN, Pansarasa O, Cereda C, Del Bo R, Comi GP, D’Alfonso S, Bertolin C, Sorarù G, Mazzini L, Pensato V, Gellera C, Tiloca C, Ratti A, Calvo A, Moglia C, Brunetti M, Arcuti S, Capozzo R, Zecca C, Lunetta C, Penco S, Riva N, Padovani A, Filosto M, Muller B, Stuit RJ, Blair I, Zhang K, McCann EP, Fifita JA, Nicholson GA, Rowe DB, Pamphlett R, Kiernan MC, Grosskreutz J, Witte OW, Ringer T, Prell T, Stubendorff B, Kurth I, Hübner CA, Leigh PN, Casale F, Chio A, Beghi E, Pupillo E, Tortelli R, Logroscino G, Powell J, Ludolph AC, Weishaupt JH, Robberecht W, Van Damme P, Franke L, Pers TH, Brown RH, Glass JD, Landers JE, Hardiman O, Andersen PM, Corcia P, Vourc’h P, Silani V, Wray NR, Visscher PM, de Bakker PI, van Es MA, Pasterkamp RJ, Lewis CM, Breen G, Al-Chalabi A, van den Berg LH, Veldink JH (2016) Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat Genet 48(9):1043–1048. https://doi.org/10.1038/ng.3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klesney-Tait J, Turnbull IR, Colonna M (2006) The TREM receptor family and signal integration. Nat Immunol 7(12):1266–1273. https://doi.org/10.1038/ni1411

    Article  CAS  PubMed  Google Scholar 

  14. Ulland TK, Colonna M (2018) TREM2—a key player in microglial biology and Alzheimer disease. Nat Rev Neurol 14(11):667–675. https://doi.org/10.1038/s41582-018-0072-1

    Article  CAS  PubMed  Google Scholar 

  15. Zhong L, Chen X-F (2019) The emerging roles and therapeutic potential of soluble TREM2 in Alzheimer’s disease. Front Aging Neurosci 11:328–328. https://doi.org/10.3389/fnagi.2019.00328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu Z, Zhang X, Dong W, Wang X, He S, Zhang H, Wang X, Wei R, Chen Y, Liu X, Guo C (2020) TREM2 suppresses the proinflammatory response to facilitate PRRSV infection via PI3K/NF-κB signaling. PLoS Pathog 16(5):e1008543–e1008543. https://doi.org/10.1371/journal.ppat.1008543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dardiotis E, Siokas V, Pantazi E, Dardioti M, Rikos D, Xiromerisiou G, Markou A, Papadimitriou D, Speletas M, Hadjigeorgiou GM (2017) A novel mutation in TREM2 gene causing Nasu-Hakola disease and review of the literature. Neurobiol Aging 53:194.e113-194.e122. https://doi.org/10.1016/j.neurobiolaging.2017.01.015

    Article  CAS  Google Scholar 

  18. Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW, Hatanpaa KJ, Lomen-Hoerth C, Kertesz A, Bigio EH, Lippa C, Josephs KA, Knopman DS, White CL, Caselli R, Mackenzie IR, Miller BL, Boczarska-Jedynak M, Opala G, Krygowska-Wajs A, Barcikowska M, Younkin SG, Petersen RC, Ertekin-Taner N, Uitti RJ, Meschia JF, Boylan KB, Boeve BF, Graff-Radford NR, Wszolek ZK, Dickson DW, Rademakers R, Ross OA (2013) TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener 8(1):19. https://doi.org/10.1186/1750-1326-8-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guerreiro R, Hardy J (2013) TREM2 and neurodegenerative disease. N Engl J Med 369(16):1569–1570. https://doi.org/10.1056/NEJMc1306509

    Article  PubMed  Google Scholar 

  20. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J, Bjornsson S, Huttenlocher J, Levey AI, Lah JJ, Rujescu D, Hampel H, Giegling I, Andreassen OA, Engedal K, Ulstein I, Djurovic S, Ibrahim-Verbaas C, Hofman A, Ikram MA, van Duijn CM, Thorsteinsdottir U, Kong A, Stefansson K (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368(2):107–116. https://doi.org/10.1056/NEJMoa1211103

    Article  CAS  PubMed  Google Scholar 

  21. Zhou SL, Tan CC, Hou XH, Cao XP, Tan L, Yu JT (2019) TREM2 variants and neurodegenerative diseases: a systematic review and meta-analysis. J Alzheimer’s Dis 68(3):1171–1184. https://doi.org/10.3233/jad-181038

    Article  CAS  Google Scholar 

  22. Ludolph A, Drory V, Hardiman O, Nakano I, Ravits J, Robberecht W, Shefner J (2015) A revision of the El Escorial criteria—2015. Amyotroph Lateral Scler Frontotemp Degener 16(5–6):291–292. https://doi.org/10.3109/21678421.2015.1049183

    Article  Google Scholar 

  23. Dardiotis E, Karampinis E, Siokas V, Aloizou AM, Rikos D, Ralli S, Papadimitriou D, Bogdanos DP, Hadjigeorgiou GM (2019) ERCC6L2 rs591486 polymorphism and risk for amyotrophic lateral sclerosis in Greek population. Neurol Sci 40(6):1237–1244. https://doi.org/10.1007/s10072-019-03825-3

    Article  PubMed  Google Scholar 

  24. Siokas V, Karampinis E, Aloizou AM, Mentis AA, Liakos P, Papadimitriou D, Liampas I, Nasios G, Bogdanos DP, Hadjigeorgiou GM, Dardiotis E (2020) CYP1A2 rs762551 polymorphism and risk for amyotrophic lateral sclerosis. Neurol Sci. https://doi.org/10.1007/s10072-020-04535-x

    Article  PubMed  Google Scholar 

  25. Siokas V, Kardaras D, Aloizou AM, Asproudis I, Boboridis KG, Papageorgiou E, Hadjigeorgiou GM, Tsironi EE, Dardiotis E (2019) BDNF rs6265 (Val66Met) polymorphism as a risk factor for blepharospasm. Neuro Mol Med 21(1):68–74. https://doi.org/10.1007/s12017-018-8519-5

    Article  CAS  Google Scholar 

  26. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. https://doi.org/10.1136/bmj.b2700

    Article  PubMed  PubMed Central  Google Scholar 

  27. Clarke NE, Clements AC, Doi SA, Wang D, Campbell SJ, Gray D, Nery SV (2017) Differential effect of mass deworming and targeted deworming for soil-transmitted helminth control in children: a systematic review and meta-analysis. Lancet 389(10066):287–297. https://doi.org/10.1016/s0140-6736(16)32123-7

    Article  PubMed  Google Scholar 

  28. Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10:101–129. https://doi.org/10.2307/3001666

    Article  Google Scholar 

  29. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  30. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3):177–188. https://doi.org/10.1016/0197-2456(86)90046-2

    Article  CAS  PubMed  Google Scholar 

  31. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. JNCI 22(4):719–748. https://doi.org/10.1093/jnci/22.4.719

    Article  CAS  PubMed  Google Scholar 

  32. Banerjee I (2009) CD14 C260T promoter polymorphism and the risk of cerebrovascular diseases: a meta-analysis. J Appl Genet 50(2):153–157. https://doi.org/10.1007/BF03195667

    Article  CAS  PubMed  Google Scholar 

  33. Furuya-Kanamori L, Barendregt JJ, Doi SAR (2018) A new improved graphical and quantitative method for detecting bias in meta-analysis. Int J Evid-Based Healthc 16(4):195–203. https://doi.org/10.1097/xeb.0000000000000141

    Article  PubMed  Google Scholar 

  34. Efthimiou O (2018) Practical guide to the meta-analysis of rare events. Evid Based Ment Health 21(2):72–76. https://doi.org/10.1136/eb-2018-102911

    Article  PubMed  Google Scholar 

  35. Ayer AH, Wojta K, Ramos EM, Dokuru D, Chen JA, Karydas AM, Papatriantafyllou JD, Agiomyrgiannakis D, Kamtsadeli V, Tsinia N, Sali D, Gylys KH, Agosta F, Filippi M, Small GW, Bennett DA, Gearing M, Juncos JL, Kramer J, Lee SE, Yokoyama JS, Mendez MF, Chui H, Zarow C, Ringman JM, Kilic U, Babacan-Yildiz G, Levey A, DeCarli CS, Cotman CW, Boxer AL, Miller BL, Coppola G (2019) Frequency of the TREM2 R47H variant in various neurodegenerative disorders. Alzheimer Dis Assoc Disord 33(4):327–330. https://doi.org/10.1097/wad.0000000000000339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P, Baloh RH, Ravits J, Simpson E, Appel SH, Pestronk A, Goate AM, Miller TM, Cruchaga C, Harms MB (2014) TREM2 variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol 71(4):449–453. https://doi.org/10.1001/jamaneurol.2013.6237

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen X, Chen Y, Wei Q, Guo X, Cao B, Ou R, Zhao B, Shang HF (2015) Assessment of TREM2 rs75932628 association with amyotrophic lateral sclerosis in a Chinese population. J Neurol Sci 355(1–2):193–195. https://doi.org/10.1016/j.jns.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  38. Lill CM, Rengmark A, Pihlstrøm L, Fogh I, Shatunov A, Sleiman PM, Wang LS, Liu T, Lassen CF, Meissner E, Alexopoulos P, Calvo A, Chio A, Dizdar N, Faltraco F, Forsgren L, Kirchheiner J, Kurz A, Larsen JP, Liebsch M, Linder J, Morrison KE, Nissbrandt H, Otto M, Pahnke J, Partch A, Restagno G, Rujescu D, Schnack C, Shaw CE, Shaw PJ, Tumani H, Tysnes OB, Valladares O, Silani V, van den Berg LH, van Rheenen W, Veldink JH, Lindenberger U, Steinhagen-Thiessen E, Teipel S, Perneczky R, Hakonarson H, Hampel H, von Arnim CAF, Olsen JH, Van Deerlin VM, Al-Chalabi A, Toft M, Ritz B, Bertram L (2015) The role of TREM2 R47H as a risk factor for Alzheimer’s disease, frontotemporal lobar degeneration, amyotrophic lateral sclerosis, and Parkinson’s disease. Alzheimer’s Dement 11(12):1407–1416. https://doi.org/10.1016/j.jalz.2014.12.009

    Article  Google Scholar 

  39. Peplonska B, Berdynski M, Mandecka M, Barczak A, Kuzma-Kozakiewicz M, Barcikowska M, Zekanowski C (2018) TREM2 variants in neurodegenerative disorders in the polish population. Homozygosity and compound heterozygosity in FTD patients. Amyotroph Later Scler Frontotemp Degener 19(5–6):407–412. https://doi.org/10.1080/21678421.2018.1451894

    Article  CAS  Google Scholar 

  40. Rikos D, Siokas V, Aloizou AM, Tsouris Z, Aslanidou P, Koutsis G, Anagnostouli M, Bogdanos DP, Grigoriadis N, Hadjigeorgiou GM, Dardiotis E (2019) TREM2 R47H (rs75932628) variant is unlikely to contribute to multiple sclerosis susceptibility and severity in a large Greek MS cohort. Mult Scler Relat Disord 35:116–118. https://doi.org/10.1016/j.msard.2019.07.007

    Article  PubMed  Google Scholar 

  41. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29(1):308–311. https://doi.org/10.1093/nar/29.1.308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dardiotis E, Rikos D, Siokas V, Aloizou AM, Tsouris Z, Sakalakis E, Brotis AG, Bogdanos DP, Hadjigeorgiou GM (2020) Assessment of TREM2 rs75932628 variant’s association with Parkinson’s disease in a Greek population and meta-analysis of current data. Int J Neurosci. https://doi.org/10.1080/00207454.2020.1750388

    Article  PubMed  Google Scholar 

  43. Ortega-Cubero S, Lorenzo-Betancor O, Lorenzo E, Agúndez JA, Jiménez-Jiménez FJ, Ross OA, Wurster I, Mielke C, Lin JJ, Coria F, Clarimon J, Ezquerra M, Brighina L, Annesi G, Alonso-Navarro H, García-Martin E, Gironell A, Marti MJ, Yueh KC, Wszolek ZK, Sharma M, Berg D, Krüger R, Pastor MA, Pastor P (2015) TREM2 R47H variant and risk of essential tremor: a cross-sectional international multicenter study. Parkinsonism Relat Disord 21(3):306–309. https://doi.org/10.1016/j.parkreldis.2014.12.010

    Article  PubMed  Google Scholar 

  44. Suárez-Calvet M, Morenas-Rodríguez E, Kleinberger G, Schlepckow K, Araque Caballero MÁ, Franzmeier N, Capell A, Fellerer K, Nuscher B, Eren E, Levin J, Deming Y, Piccio L, Karch CM, Cruchaga C, Shaw LM, Trojanowski JQ, Weiner M, Ewers M, Haass C, for the Alzheimer’s Disease Neuroimaging I (2019) Early increase of CSF sTREM2 in Alzheimer’s disease is associated with tau related-neurodegeneration but not with amyloid-β pathology. Mol Neurodegener 14(1):1. https://doi.org/10.1186/s13024-018-0301-5

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, Wang D, Gao Y, Zhu Y, Sheng X, Chen K, Wang N, Zhu L, Can D, Marten Y, Shinohara M, Liu CC, Du D, Sun H, Wen L, Xu H, Bu G, Chen XF (2019) Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer’s disease model. Nat Commun 10(1):1365. https://doi.org/10.1038/s41467-019-09118-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suárez-Calvet M, Kleinberger G, Araque Caballero M, Brendel M, Rominger A, Alcolea D, Fortea J, Lleó A, Blesa R, Gispert JD, Sánchez-Valle R, Antonell A, Rami L, Molinuevo JL, Brosseron F, Traschütz A, Heneka MT, Struyfs H, Engelborghs S, Sleegers K, Van Broeckhoven C, Zetterberg H, Nellgård B, Blennow K, Crispin A, Ewers M, Haass C (2016) sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early-stage Alzheimer’s disease and associate with neuronal injury markers. EMBO Mol Med 8(5):466–476. https://doi.org/10.15252/emmm.201506123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cooper-Knock J, Green C, Altschuler G, Wei W, Bury JJ, Heath PR, Wyles M, Gelsthorpe C, Highley JR, Lorente-Pons A, Beck T, Doyle K, Otero K, Traynor B, Kirby J, Shaw PJ, Hide W (2017) A data-driven approach links microglia to pathology and prognosis in amyotrophic lateral sclerosis. Acta Neuropathol Commun 5(1):23. https://doi.org/10.1186/s40478-017-0424-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang F, Zhu Y, Hsiao-Nakamoto J, Tang X, Dugas JC, Moscovitch-Lopatin M, Glass JD, Brown RH Jr, Ladha SS, Lacomis D, Harris JM, Scearce-Levie K, Ho C, Bowser R, Berry JD (2020) Longitudinal biomarkers in amyotrophic lateral sclerosis. Ann Clin Transl Neurol 7(7):1103–1116. https://doi.org/10.1002/acn3.51078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fang T, Al Khleifat A, Meurgey J-H, Jones A, Leigh PN, Bensimon G, Al-Chalabi A (2018) Stage at which riluzole treatment prolongs survival in patients with amyotrophic lateral sclerosis: a retrospective analysis of data from a dose-ranging study. Lancet Neurol 17(5):416–422. https://doi.org/10.1016/S1474-4422(18)30054-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang B, Wu Y, Wang Y, Yang H, Du B, Di W, Xu X, Shi X (2020) Cerebrospinal fluid MFG-E8 as a promising biomarker of amyotrophic lateral sclerosis. Neurol Sci. https://doi.org/10.1007/s10072-020-04416-3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported in part by a research Grant from the Research Committee of the University of Thessaly, Greece (code: 5287).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: VS, GMH and ED; methodology: VS, AA, IL and ZT; formal analysis and investigation: VS, AA, IL and ZT; writing—original draft preparation: VS and AA; writing—review and editing: VS, AA, IL, ZT, AFAM, GN, DP, DPB, GMH and ED; funding acquisition: ED; resources: ED; supervision: ED.

Corresponding author

Correspondence to Efthimios Dardiotis.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent to participate

All the authors listed have approved the manuscript that is enclosed.

Consent for publication

The manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siokas, V., Aloizou, AM., Liampas, I. et al. Lack of association between TREM2 rs75932628 variant and amyotrophic lateral sclerosis. Mol Biol Rep 48, 2601–2610 (2021). https://doi.org/10.1007/s11033-021-06312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06312-1

Keywords

Navigation