Skip to main content
Log in

Liver sinusoidal endothelial cells are implicated in multiple fibrotic mechanisms

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chronic liver diseases are attributed to liver injury. Development of fibrosis from chronic liver diseases is a dynamic process that involves multiple molecular and cellular processes. As the first to be impacted by injury, liver sinusoidal endothelial cells (LSECs) are involved in the pathogenesis of liver diseases caused by a variety of etiologies. Moreover, capillarization of LSECs has been recognized as an important event in the development of chronic liver diseases and fibrosis. Studies have reported that various cytokines (such as vascular endothelial growth factor, transforming growth factor-β), and pathways (such as hedgehog, and Notch), as well as epigenetic and metabolic factors are involved in the development of LSEC-mediated liver fibrosis. This review describes the complexity and plasticity of LSECs in fibrotic liver diseases from several perspectives, including the cross-talk between LSECs and other intra-hepatic cells. Moreover, it summarizes the mechanisms of several kinds of LSECs-targeting anti-fibrosis chemicals, and provides a theoretical basis for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Poisson J, Lemoinne S, Boulanger C et al (2017) Liver sinusoidal endothelial cells: physiology and role in liver diseases. J Hepatol 66(1):212–227. https://doi.org/10.1016/j.jhep.2016.07.009

    Article  CAS  PubMed  Google Scholar 

  2. Steffan AM, Gendrault JL, McCuskey RS, McCuskey PA, Kirn A (1986) Phagocytosis, an unrecognized property of murine endothelial liver cells. Hepatology 6(5):830–836

    Article  CAS  PubMed  Google Scholar 

  3. Wilkinson AL, Qurashi M, Shetty S (2020) The role of sinusoidal endothelial cells in the axis of inflammation and cancer within the liver. Front Physiol 11:990. https://doi.org/10.3389/fphys.2020.00990

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liu L, You Z, Yu H et al (2017) Mechanotransduction-modulated fibrotic microniches reveal the contribution of angiogenesis in liver fibrosis. Nat Mater 16(12):1252–1261. https://doi.org/10.1038/nmat5024

    Article  CAS  PubMed  Google Scholar 

  5. Xie G, Wang X, Wang L et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology. 2012;142(4). doi:https://doi.org/10.1053/j.gastro.2011.12.017.

  6. Leo CH, Jelinic M, Ng HH et al (2017) Vascular actions of relaxin: nitric oxide and beyond. Br J Pharmacol 174(10):1002–1014. https://doi.org/10.1111/bph.13614

    Article  CAS  PubMed  Google Scholar 

  7. Yan Z, Qu K, Zhang J et al (2015) CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells. Clin Sci (Lond) 129(8):699–710. https://doi.org/10.1042/CS20140823

    Article  CAS  Google Scholar 

  8. Kantari-Mimoun C, Castells M, Klose R et al (2015) Resolution of liver fibrosis requires myeloid cell-driven sinusoidal angiogenesis. Hepatology (Baltimore, MD) 61(6):2042–2055. https://doi.org/10.1002/hep.27635

    Article  CAS  Google Scholar 

  9. Shi M, Zhu J, Wang R et al (2011) Latent TGF-β structure and activation. Nature 474(7351):343–349. https://doi.org/10.1038/nature10152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Henderson NC, Arnold TD, Katamura Y et al (2013) Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 19(12):1617–1624. https://doi.org/10.1038/nm.3282

    Article  CAS  PubMed  Google Scholar 

  11. Sakata K, Eda S, Lee E-S, Hara M, Imoto M, Kojima S (2014) Neovessel formation promotes liver fibrosis via providing latent transforming growth factor-β. Biochem Biophys Res Commun 443(3):950–956. https://doi.org/10.1016/j.bbrc.2013.12.074

    Article  CAS  PubMed  Google Scholar 

  12. Caja L, Dituri F, Mancarella S et al (2018) TGF-β and the tissue microenvironment: relevance in fibrosis and cancer. Int J Mol Sci. https://doi.org/10.3390/ijms19051294

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pardali E, Sanchez-Duffhues G, Gomez-Puerto MC, Ten Dijke P (2017) TGF-β-induced endothelial-mesenchymal transition in fibrotic diseases. Int J Mol Sci. https://doi.org/10.3390/ijms18102157

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ribera J, Pauta M, Melgar-Lesmes P et al (2017) A small population of liver endothelial cells undergoes endothelial-to-mesenchymal transition in response to chronic liver injury. Am J Physiol Gastrointest Liver Physiol 313(5):G492–G504. https://doi.org/10.1152/ajpgi.00428.2016

    Article  CAS  PubMed  Google Scholar 

  15. Tillet E, Ouarné M, Desroches-Castan A et al (2018) A heterodimer formed by bone morphogenetic protein 9 (BMP9) and BMP10 provides most BMP biological activity in plasma. J Biol Chem 293(28):10963–10974. https://doi.org/10.1074/jbc.RA118.002968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Breitkopf-Heinlein K, Meyer C, König C et al (2017) BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut 66(5):939–954. https://doi.org/10.1136/gutjnl-2016-313314

    Article  CAS  PubMed  Google Scholar 

  17. Desroches-Castan A, Tillet E, Ricard N et al (2019) Bone morphogenetic protein 9 is a paracrine factor controlling liver sinusoidal endothelial cell fenestration and protecting against hepatic fibrosis. Hepatology (Baltimore, MD) 70(4):1392–1408. https://doi.org/10.1002/hep.30655

    Article  CAS  Google Scholar 

  18. Gaitantzi H, Karch J, Germann L et al (2020) BMP-9 modulates the hepatic responses to LPS. Cells. https://doi.org/10.3390/cells9030617

    Article  PubMed  PubMed Central  Google Scholar 

  19. Maretti-Mira AC, Wang X, Wang L, DeLeve LD (2019) Incomplete differentiation of engrafted bone marrow endothelial progenitor cells initiates hepatic fibrosis in the rat. Hepatology 69(3):1259–1272. https://doi.org/10.1002/hep.30227

    Article  CAS  PubMed  Google Scholar 

  20. Kaur S, Tripathi D, Dongre K et al (2012) Increased number and function of endothelial progenitor cells stimulate angiogenesis by resident liver sinusoidal endothelial cells (SECs) in cirrhosis through paracrine factors. J Hepatol 57(6):1193–1198. https://doi.org/10.1016/j.jhep.2012.07.016

    Article  CAS  PubMed  Google Scholar 

  21. Choi SS, Omenetti A, Syn W-K, Diehl AM (2011) The role of Hedgehog signaling in fibrogenic liver repair. Int J Biochem Cell Biol 43(2):238–244. https://doi.org/10.1016/j.biocel.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  22. Pereira TA, Xie G, Choi SS et al (2013) Macrophage-derived Hedgehog ligands promotes fibrogenic and angiogenic responses in human schistosomiasis mansoni. Liver Int 33(1):149–161. https://doi.org/10.1111/liv.12016

    Article  CAS  PubMed  Google Scholar 

  23. Witek RP, Yang L, Liu R et al (2009) Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology. https://doi.org/10.1053/j.gastro.2008.09.066

    Article  PubMed  Google Scholar 

  24. Xie G, Choi SS, Syn W-K et al (2013) Hedgehog signalling regulates liver sinusoidal endothelial cell capillarisation. Gut 62(2):299–309. https://doi.org/10.1136/gutjnl-2011-301494

    Article  CAS  PubMed  Google Scholar 

  25. Dill MT, Rothweiler S, Djonov V et al (2012) Disruption of Notch1 induces vascular remodeling, intussusceptive angiogenesis, and angiosarcomas in livers of mice. Gastroenterology. https://doi.org/10.1053/j.gastro.2011.12.052

    Article  PubMed  Google Scholar 

  26. Duan J-L, Ruan B, Yan X-C et al (2018) Endothelial Notch activation reshapes the angiocrine of sinusoidal endothelia to aggravate liver fibrosis and blunt regeneration in mice. Hepatology 68(2):677–690. https://doi.org/10.1002/hep.29834

    Article  CAS  PubMed  Google Scholar 

  27. Shen Z, Liu Y, Dewidar B et al (2016) Delta-like ligand 4 modulates liver damage by down-regulating chemokine expression. Am J Pathol 186(7):1874–1889. https://doi.org/10.1016/j.ajpath.2016.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen L, Gu T, Li B et al (2019) Delta-like ligand 4/DLL4 regulates the capillarization of liver sinusoidal endothelial cell and liver fibrogenesis. Biochim Biophys Acta Mol Cell Res 1866(10):1663–1675. https://doi.org/10.1016/j.bbamcr.2019.06.011

    Article  CAS  PubMed  Google Scholar 

  29. Resnick N, Yahav H, Shay-Salit A et al (2003) Fluid shear stress and the vascular endothelium: for better and for worse. Prog Biophys Mol Biol 81(3):177–199

    Article  PubMed  Google Scholar 

  30. Yoshizumi M, Abe J-I, Tsuchiya K, Berk BC, Tamaki T (2003) Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases. J Pharmacol Sci 91(3):172–176

    Article  CAS  PubMed  Google Scholar 

  31. Kumar A, Lin Z, SenBanerjee S, Jain MK (2005) Tumor necrosis factor alpha-mediated reduction of KLF2 is due to inhibition of MEF2 by NF-kappaB and histone deacetylases. Mol Cell Biol 25(14):5893–5903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gracia-Sancho J, Russo L, García-Calderó H, García-Pagán JC, García-Cardeña G, Bosch J (2011) Endothelial expression of transcription factor Kruppel-like factor 2 and its vasoprotective target genes in the normal and cirrhotic rat liver. Gut 60(4):517–524. https://doi.org/10.1136/gut.2010.220913

    Article  CAS  PubMed  Google Scholar 

  33. Marrone G, Maeso-Díaz R, García-Cardena G et al (2015) KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic rat livers: behind the molecular mechanisms of statins. Gut 64(9):1434–1443. https://doi.org/10.1136/gutjnl-2014-308338

    Article  CAS  PubMed  Google Scholar 

  34. Zeng X-Q, Li N, Pan D-Y et al (2015) Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway. Biochem Biophys Res Commun 464(4):1241–1247. https://doi.org/10.1016/j.bbrc.2015.07.113

    Article  CAS  PubMed  Google Scholar 

  35. Natarajan V, Harris EN, Kidambi S (2017) SECs (sinusoidal endothelial cells), liver microenvironment, and fibrosis. Biomed Res Int 2017:4097205. https://doi.org/10.1155/2017/4097205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hilscher MB, Sehrawat T, Arab JP et al (2019) Mechanical stretch increases expression of CXCL1 in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension. Gastroenterology. https://doi.org/10.1053/j.gastro.2019.03.013

    Article  PubMed  Google Scholar 

  37. Maher JJ, McGuire RF (1990) Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo. J Clin Invest 86(5):1641–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neubauer K, Krüger M, Quondamatteo F, Knittel T, Saile B, Ramadori G (1999) Transforming growth factor-beta1 stimulates the synthesis of basement membrane proteins laminin, collagen type IV and entactin in rat liver sinusoidal endothelial cells. J Hepatol 31(4):692–702

    Article  CAS  PubMed  Google Scholar 

  39. Juin A, Planus E, Guillemot F et al (2013) Extracellular matrix rigidity controls podosome induction in microvascular endothelial cells. Biol Cell 105(1):46–57. https://doi.org/10.1111/boc.201200037

    Article  CAS  PubMed  Google Scholar 

  40. Marrone G, Shah VH, Gracia-Sancho J (2016) Sinusoidal communication in liver fibrosis and regeneration. J Hepatol 65(3):608–617. https://doi.org/10.1016/j.jhep.2016.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hammoutene A, Biquard L, Lasselin J et al (2020) A defect in endothelial autophagy occurs in patients with non-alcoholic steatohepatitis and promotes inflammation and fibrosis. J Hepatol 72(3):528–538. https://doi.org/10.1016/j.jhep.2019.10.028

    Article  CAS  PubMed  Google Scholar 

  42. Hernández-Gea V, Ghiassi-Nejad Z, Rozenfeld R et al (2012) Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142(4):938–946. https://doi.org/10.1053/j.gastro.2011.12.044

    Article  PubMed  Google Scholar 

  43. Ruart M, Chavarria L, Campreciós G et al (2019) Impaired endothelial autophagy promotes liver fibrosis by aggravating the oxidative stress response during acute liver injury. J Hepatol 70(3):458–469. https://doi.org/10.1016/j.jhep.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  44. Guixé-Muntet S, de Mesquita FC, Vila S et al (2017) Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury. J Hepatol 66(1):86–94. https://doi.org/10.1016/j.jhep.2016.07.051

    Article  CAS  PubMed  Google Scholar 

  45. Miyao M, Kotani H, Ishida T et al (2015) Pivotal role of liver sinusoidal endothelial cells in NAFLD/NASH progression. Lab Invest 95(10):1130–1144. https://doi.org/10.1038/labinvest.2015.95

    Article  CAS  PubMed  Google Scholar 

  46. Hammoutene A, Rautou P-E (2019) Role of liver sinusoidal endothelial cells in non-alcoholic fatty liver disease. J Hepatol 70(6):1278–1291. https://doi.org/10.1016/j.jhep.2019.02.012

    Article  CAS  PubMed  Google Scholar 

  47. Cogger VC, Mohamad M, Solon-Biet SM et al (2016) Dietary macronutrients and the aging liver sinusoidal endothelial cell. Am J Physiol Heart Circ Physiol 310(9):H1064–H1070. https://doi.org/10.1152/ajpheart.00949.2015

    Article  PubMed  Google Scholar 

  48. Pourhoseini S, Seth RK, Das S et al (2015) Upregulation of miR21 and repression of Grhl3 by leptin mediates sinusoidal endothelial injury in experimental nonalcoholic steatohepatitis. PLoS ONE 10(2):e0116780. https://doi.org/10.1371/journal.pone.0116780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang BY, Ju XH, Fu BY, Zhang J, Cao YX (2005) Effects of ethanol on liver sinusoidal endothelial cells-fenestrae of rats. Hepatobiliary Pancreat Dis Int 4(3):422–426

    PubMed  Google Scholar 

  50. Witte MH, Borgs P, Way DL, Ramirez G, Bernas MJ, Witte CL (1992) Alcohol, hepatic sinusoidal microcirculation, and chronic liver disease. Alcohol 9(6):473–480

    Article  CAS  PubMed  Google Scholar 

  51. Deaciuc D, Fortunato H, Sarphie McClain (2001) Alcohol-induced sinusoidal endothelial cell dysfunction in the mouse is associated with exacerbated liver apoptosis and can be reversed by caspase inhibition. Hepatol Res 19(1):85–97

    Article  CAS  PubMed  Google Scholar 

  52. Miller AM, Wang H, Park O et al (2010) Anti-inflammatory and anti-apoptotic roles of endothelial cell STAT3 in alcoholic liver injury. Alcohol Clin Exp Res 34(4):719–725. https://doi.org/10.1111/j.1530-0277.2009.01141.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McCuskey RS, Bethea NW, Wong J et al (2005) Ethanol binging exacerbates sinusoidal endothelial and parenchymal injury elicited by acetaminophen. J Hepatol 42(3):371–377

    Article  CAS  PubMed  Google Scholar 

  54. Maeso-Díaz R, Ortega-Ribera M, Fernández-Iglesias A et al (2018) Effects of aging on liver microcirculatory function and sinusoidal phenotype. Aging Cell 17(6):e12829. https://doi.org/10.1111/acel.12829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ito Y, Sørensen KK, Bethea NW et al (2007) Age-related changes in the hepatic microcirculation in mice. Exp Gerontol 42(8):789–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yeligar S, Tsukamoto H, Kalra VK (2009) Ethanol-induced expression of ET-1 and ET-BR in liver sinusoidal endothelial cells and human endothelial cells involves hypoxia-inducible factor-1alpha and microrNA-199. J Immunol 183(8):5232–5243. https://doi.org/10.4049/jimmunol.0901084

    Article  CAS  PubMed  Google Scholar 

  57. Wang Q, Zhang F, Lei Y, Liu P, Liu C, Tao Y (2020) microRNA-322/424 promotes liver fibrosis by regulating angiogenesis through targeting CUL2/HIF-1α pathway. Life Sci 266:118819. https://doi.org/10.1016/j.lfs.2020.118819

    Article  CAS  PubMed  Google Scholar 

  58. Zhu A, Chu L, Ma Q, Li Y (2018) WITHDRAWN: Long non-coding RNA H19 promotes angiogenesis in microvascular endothelial cells by down-regulating miR-181a. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2018.08.091

    Article  PubMed  Google Scholar 

  59. Ye Y, Shen A, Liu A (2019) Long non-coding RNA H19 and cancer: a competing endogenous RNA. Bull Cancer 106(12):1152–1159. https://doi.org/10.1016/j.bulcan.2019.08.011

    Article  PubMed  Google Scholar 

  60. Zhu Y, Ni T, Lin J, Zhang C, Zheng L, Luo M (2019) Long non-coding RNA H19, a negative regulator of microRNA-148b-3p, participates in hypoxia stress in human hepatic sinusoidal endothelial cells via NOX4 and eNOS/NO signaling. Biochimie 163:128–136. https://doi.org/10.1016/j.biochi.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  61. Guo C, Qi Y, Qu J, Gai L, Shi Y, Yuan C (2020) Pathophysiological functions of the lncRNA TUG1. Curr Pharm Des 26(6):688–700. https://doi.org/10.2174/1381612826666191227154009

    Article  CAS  PubMed  Google Scholar 

  62. Zhang R, Huang X-Q, Jiang Y-Y, Li N, Wang J, Chen S-Y (2020) LncRNA TUG1 regulates autophagy-mediated endothelial-mesenchymal transition of liver sinusoidal endothelial cells by sponging miR-142-3p. Am J Transl Res 12(3):758–772

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Shao J, Xu Y, Fang M (2020) BRG1 deficiency in endothelial cells alleviates thioacetamide induced liver fibrosis in mice. Biochem Biophys Res Commun 521(1):212–219. https://doi.org/10.1016/j.bbrc.2019.10.109

    Article  CAS  PubMed  Google Scholar 

  64. Sun L-J, Yu J-W, Shi Y-G, Zhang X-Y, Shu M-N, Chen M-Y (2018) Hepatitis C virus core protein induces dysfunction of liver sinusoidal endothelial cell by down-regulation of silent information regulator 1. J Med Virol 90(5):926–935. https://doi.org/10.1002/jmv.25034

    Article  CAS  PubMed  Google Scholar 

  65. Verbeke L, Farre R, Trebicka J et al (2014) Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 59(6):2286–2298. https://doi.org/10.1002/hep.26939

    Article  CAS  PubMed  Google Scholar 

  66. Verbeke L, Mannaerts I, Schierwagen R et al (2016) FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci Rep 6:33453. https://doi.org/10.1038/srep33453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwabl P, Hambruch E, Seeland BA et al (2017) The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J Hepatol 66(4):724–733. https://doi.org/10.1016/j.jhep.2016.12.005

    Article  CAS  PubMed  Google Scholar 

  68. Xing Y, Zhao T, Gao X, Wu Y (2016) Liver X receptor α is essential for the capillarization of liver sinusoidal endothelial cells in liver injury. Sci Rep 6:21309. https://doi.org/10.1038/srep21309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Baiocchini A, Del Nonno F, Taibi C et al (2019) Liver sinusoidal endothelial cells (LSECs) modifications in patients with chronic hepatitis C. Sci Rep 9(1):8760. https://doi.org/10.1038/s41598-019-45114-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tsai H-C, Li T-H, Huang C-C et al (2018) Beneficial effects of the peroxisome proliferator-activated receptor α/γ agonist aleglitazar on progressive hepatic and splanchnic abnormalities in cirrhotic rats with portal hypertension. Am J Pathol 188(7):1608–1624. https://doi.org/10.1016/j.ajpath.2018.03.018

    Article  CAS  PubMed  Google Scholar 

  71. Boyer-Diaz Z, Aristu-Zabalza P, Andrés-Rozas M et al (2020) Pan-PPAR agonist lanifibranor improves portal hypertension and hepatic fibrosis in experimental advanced chronic liver disease. J Hepatol. https://doi.org/10.1016/j.jhep.2020.11.045

    Article  PubMed  Google Scholar 

  72. Ding B-S, Liu CH, Sun Y et al (2016) HDL activation of endothelial sphingosine-1-phosphate receptor-1 (S1P) promotes regeneration and suppresses fibrosis in the liver. JCI insight 1(21):e87058. https://doi.org/10.1172/jci.insight.87058

    Article  PubMed  PubMed Central  Google Scholar 

  73. Keitel V, Reinehr R, Gatsios P et al (2007) The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology 45(3):695–704

    Article  CAS  PubMed  Google Scholar 

  74. Klindt C, Reich M, Hellwig B et al (2019) The G protein-coupled bile acid receptor TGR5 (Gpbar1) modulates endothelin-1 signaling in liver. Cells. https://doi.org/10.3390/cells8111467

    Article  PubMed  PubMed Central  Google Scholar 

  75. Schmid CD, Schledzewski K, Mogler C et al (2018) GPR182 is a novel marker for sinusoidal endothelial differentiation with distinct GPCR signaling activity in vitro. Biochem Biophys Res Commun 497(1):32–38. https://doi.org/10.1016/j.bbrc.2018.01.185

    Article  CAS  PubMed  Google Scholar 

  76. Liu D, Chen J, Wang J et al (2010) Increased expression of urotensin II and GPR14 in patients with cirrhosis and portal hypertension. Int J Mol Med 25(6):845–851

    CAS  PubMed  Google Scholar 

  77. Wang R, Ding Q, Yaqoob U et al (2015) Exosome adherence and internalization by hepatic stellate cells triggers sphingosine 1-phosphate-dependent migration. J Biol Chem 290(52):30684–30696. https://doi.org/10.1074/jbc.M115.671735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hong F, Tuyama A, Lee TF et al (2009) Hepatic stellate cells express functional CXCR4: role in stromal cell-derived factor-1alpha-mediated stellate cell activation. Hepatology 49(6):2055–2067. https://doi.org/10.1002/hep.22890

    Article  CAS  PubMed  Google Scholar 

  79. Liu Y, Yang X, Jing Y et al (2015) Contribution and mobilization of mesenchymal stem cells in a mouse model of carbon tetrachloride-induced liver fibrosis. Sci Rep 5:17762. https://doi.org/10.1038/srep17762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liepelt A, Tacke F (2016) Stromal cell-derived factor-1 (SDF-1) as a target in liver diseases. Am J Physiol Gastrointest Liver Physiol 311(2):G203–G209. https://doi.org/10.1152/ajpgi.00193.2016

    Article  PubMed  Google Scholar 

  81. Ramirez-Pedraza M, Fernández M (2019) Interplay between macrophages and angiogenesis: a double-edged sword in liver disease. Front Immunol 10:2882. https://doi.org/10.3389/fimmu.2019.02882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wu M-H, Chen Y-L, Lee K-H et al (2017) Glycosylation-dependent galectin-1/neuropilin-1 interactions promote liver fibrosis through activation of TGF-β- and PDGF-like signals in hepatic stellate cells. Sci Rep 7(1):11006. https://doi.org/10.1038/s41598-017-11212-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Semela D, Das A, Langer D, Kang N, Leof E, Shah V (2008) Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function. Gastroenterology 135(2):671–679. https://doi.org/10.1053/j.gastro.2008.04.010

    Article  CAS  PubMed  Google Scholar 

  84. Venkatraman L, Tucker-Kellogg L (2013) The CD47-binding peptide of thrombospondin-1 induces defenestration of liver sinusoidal endothelial cells. Liver Int 33(9):1386–1397. https://doi.org/10.1111/liv.12231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lao Y, Li Y, Zhang P et al (2018) Targeting endothelial Erk1/2-Akt axis as a regeneration strategy to bypass fibrosis during chronic liver injury in mice. Mol Ther 26(12):2779–2797. https://doi.org/10.1016/j.ymthe.2018.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rautou P-E, Bresson J, Sainte-Marie Y et al (2012) Abnormal plasma microparticles impair vasoconstrictor responses in patients with cirrhosis. Gastroenterology. https://doi.org/10.1053/j.gastro.2012.03.040

    Article  PubMed  Google Scholar 

  87. Tegge AN, Rodrigues RR, Larkin AL, Vu L, Murali TM, Rajagopalan P (2018) Transcriptomic analysis of hepatic cells in multicellular organotypic liver models. Sci Rep 8(1):11306. https://doi.org/10.1038/s41598-018-29455-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lafoz E, Ruart M, Anton A, Oncins A, Hernández-Gea V (2020) The endothelium as a driver of liver fibrosis and regeneration. Cells. https://doi.org/10.3390/cells9040929

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ford AJ, Jain G, Rajagopalan P (2015) Designing a fibrotic microenvironment to investigate changes in human liver sinusoidal endothelial cell function. Acta Biomater 24:220–227. https://doi.org/10.1016/j.actbio.2015.06.028

    Article  CAS  PubMed  Google Scholar 

  90. Abraldes JG, Rodríguez-Vilarrupla A, Graupera M et al (2007) Simvastatin treatment improves liver sinusoidal endothelial dysfunction in CCl4 cirrhotic rats. J Hepatol 46(6):1040–1046

    Article  CAS  PubMed  Google Scholar 

  91. Bravo M, Raurell I, Hide D et al (2019) Restoration of liver sinusoidal cell phenotypes by statins improves portal hypertension and histology in rats with NASH. Sci Rep 9(1):20183. https://doi.org/10.1038/s41598-019-56366-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hu L, Su L, Dong Z et al (2019) AMPK agonist AICAR ameliorates portal hypertension and liver cirrhosis via NO pathway in the BDL rat model. J Mol Med (Berl) 97(3):423–434. https://doi.org/10.1007/s00109-019-01746-4

    Article  CAS  Google Scholar 

  93. Hunt NJ, Lockwood GP, Kang SWS et al (2020) The effects of metformin on age-related changes in the liver sinusoidal endothelial cell. J Gerontol A Biol Sci Med Sci 75(2):278–285. https://doi.org/10.1093/gerona/glz153

    Article  CAS  PubMed  Google Scholar 

  94. Kong L-J, Li H, Du Y-J et al (2017) Vatalanib, a tyrosine kinase inhibitor, decreases hepatic fibrosis and sinusoidal capillarization in CCl4-induced fibrotic mice. Mol Med Rep 15(5):2604–2610. https://doi.org/10.3892/mmr.2017.6325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Piguet A-C, Majumder S, Maheshwari U et al (2014) Everolimus is a potent inhibitor of activated hepatic stellate cell functions in vitro and in vivo, while demonstrating anti-angiogenic activities. Clin Sci (Lond) 126(11):775–784. https://doi.org/10.1042/CS20130081

    Article  CAS  Google Scholar 

  96. Ling L, Li G, Meng D, Wang S, Zhang C (2018) Carvedilol ameliorates intrahepatic angiogenesis, sinusoidal remodeling and portal pressure in cirrhotic rats. Med Sci Monit 24:8290–8297. https://doi.org/10.12659/MSM.913118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wu Y, Li Z, Xiu A-Y, Meng D-X, Wang S-N, Zhang C-Q (2019) Carvedilol attenuates carbon tetrachloride-induced liver fibrosis and hepatic sinusoidal capillarization in mice. Drug Des Dev Ther 13:2667–2676. https://doi.org/10.2147/DDDT.S210797

    Article  CAS  Google Scholar 

  98. Di Martino J, Mascalchi P, Legros P et al (2019) Actin depolymerization in dedifferentiated liver sinusoidal endothelial cells promotes fenestrae re-formation. Hepatol Commun 3(2):213–219. https://doi.org/10.1002/hep4.1301

    Article  CAS  PubMed  Google Scholar 

  99. Bi Y, Mukhopadhyay D, Drinane M et al (2014) Endocytosis of collagen by hepatic stellate cells regulates extracellular matrix dynamics. Am J Physiol, Cell Physiol 307(7):C622–C633. https://doi.org/10.1152/ajpcell.00086.2014

    Article  CAS  Google Scholar 

Download references

Funding

This manuscript is supported by no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junqi Niu.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2021_6269_MOESM1_ESM.png

Supplementary Fig. 1 The LSECs-HSCs cross-talk and changes of markers in Normal or Fibrotic Livers. Several cytokines and pathways are involved in the cross-talk between LSECs and HSCs. ECM, extracellular matrix; ET-1, endothelin-1; NO, nitric oxide; KLF2, Kruppel-like factor 2; PDGF, Platelet derived growth factor; SDF-1, stromal cell derived factor 1; SK-1, sphingosine kinase-1; S1P, sphingosine 1-phosphate; TSP-1, thrombospondin-1; VEGF, vascular endothelial growth factor. (PNG 218 kb)

Supplementary file2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Liu, X., Zhang, M. et al. Liver sinusoidal endothelial cells are implicated in multiple fibrotic mechanisms. Mol Biol Rep 48, 2803–2815 (2021). https://doi.org/10.1007/s11033-021-06269-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06269-1

Keywords

Navigation