Skip to main content

Advertisement

Log in

Validation of reference genes for quantitative gene expression in the Lippia alba polyploid complex (Verbenaceae)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Lippia alba (Verbenaceae) is one of the most studied species of the genus Lippia, mainly due to its medicinal properties. The species was described as a polyploid complex with five cytotypes. The comparison of gene expression in species with several ploidal levels needs to be conducted carefully due to possible changes in gene regulation. Quantitative reverse transcription PCR (qRT-PCR) is a widely used method for transcript abundance analyses in plants. Besides being an extremely powerful technique, relative quantification by Real-Time quantitative PCR (RT-qPCR) needs the normalization with a stable reference gene. We evaluated the stability of nine candidate reference genes in Lippia alba with different ploidal levels using NormFinder, geNorm, and RefFinder software. The product of each primer showed a single peak in the melting curve. The R2 value ranged from 0.998 to 1000 and primers efficiency ranged from 98.95% to 129%. The CIT gene came up as a stable housekeeping gene, being appropriate for studies in polyploid accessions of Lippia alba. Considering that polyploidy is widely documented in Angiosperms, the results can be used not only for further gene expression studies in L. alba but also as a possible reference gene for other polyploid complexes. Differential stability among different genes highlights the importance of the validation of reference genes used for RT-qPCR approach in polyploid studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Viccini LF, Silveira RS, Do Vale AA et al (2014) Citral and linalool content has been correlated to DNA content in Lippia alba (Mill.). NE Brown (Verbenaceae) Ind Crop Prod 59:14–19

    CAS  Google Scholar 

  2. Attanayake AP, Jayatilaka KAPW, Pathirana C, Mudduwa LKB (2015) Antioxidant activity of Gmelina arborea Roxb.(Verbenaceae) bark extract: In vivo and in vitro study. J Med Nutr Nutraceut 4:32

    Google Scholar 

  3. Reis AC, Sousa SM, Vale AA et al (2014) Lippia alba (Verbenaceae): a new tropical autopolyploid complex? Am J Bot 101:1002–1012

    PubMed  Google Scholar 

  4. Reis AC, Sousa SM, Viccini LF (2016) High frequency of cytomixis observed at zygotene in tetraploid Lippia alba. Plant Syst and Evol 302:121–127

    Google Scholar 

  5. Lopes JML, Carvalho HH, Zorzatto C et al (2020) Genetic relationships and polyploid origins in the Lippia alba complex. Am J Bot 107:466–476

    PubMed  Google Scholar 

  6. Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. PNAS 97:7051–7057

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genomes. Proc Natl Acad Sci USA 92:8089–8091

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Ann Rev Genet 34:401–437

    CAS  PubMed  Google Scholar 

  9. Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annu Rev Plant Biol 60:561–588

    CAS  PubMed  Google Scholar 

  10. Soltis PS, Soltis DE (2012) Polyploidy and genome evolution Springer

  11. Wendel JF (2015) The wondrous cycles of polyploidy in plants. Am J Bot, v 102:1753–1756

    CAS  Google Scholar 

  12. Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:1–14

    Google Scholar 

  13. Jiao Y, Wickett NJ, Ayyampalayam S et al (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100. https://doi.org/10.1038/nature09916

    Article  CAS  PubMed  Google Scholar 

  14. Albert VA, Barbazuk WB, Depamphilis CW et al (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089

    Google Scholar 

  15. Chen ZJ, Ni Z (2006) Mechanisms of genomic rearrangements and gene expression changes in plant polyploids. Bioessays 28:240–252

    PubMed  Google Scholar 

  16. Soltis PS, Marchant DB, Van De Peer Y, Soltis DE (2015) Polyploidy and genome evolution in plants. Curr Opin Genet 35:119–125

    CAS  Google Scholar 

  17. Pérez R, Jouve N, De Bustos A (2014) Comparative analysis of gene expression among species of different ploidy. Mol Biol Rep 41:6525–6535

    PubMed  Google Scholar 

  18. Wang H, Chen S, Jiang J et al (2015) Reference gene selection for cross-species and cross-ploidy level comparisons in Chrysanthemum spp. Sci Rep 5:8094

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zorrilla-Fontanesi Y, Rouard M, Cenci A et al (2016) Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress. Sci Rep 6:22583

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li Q, Fang C, Duan Z et al (2016) Functional conservation and divergence of Gm CHLI genes in polyploid soybean. Plant J 88:584–596

    CAS  PubMed  Google Scholar 

  21. Xiong Y, Gan L, Hu Y et al (2019) OsMND1 regulates early meiosis and improves the seed set rate in polyploid rice. Plant Growth Regul 87:341–356

    CAS  Google Scholar 

  22. VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44:619–626

    CAS  PubMed  Google Scholar 

  23. Narancio R, John U, Mason J, Spangenberg G (2018) Selection of optimal reference genes for quantitative RT-PCR transcript abundance analysis in white clover (Trifolium repens L). Funct Plant Biol 45:737–744

    CAS  PubMed  Google Scholar 

  24. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582

    CAS  PubMed  Google Scholar 

  25. Bustin SA (2004) A-Z of quantitative PCR. International University Line (IUL) La Jolla, CA, USA

  26. Castonguay Y, Michaud J, Dubé MP (2015) Reference genes for RT-qPCR analysis of environmentally and developmentally regulated gene expression in alfalfa. Am J Plant Sci 6:132–143

    Google Scholar 

  27. Marcial-Quino J, Fierro F, Enríquez-Flores S et al (2016) Validation of housekeeping genes as an internal control for gene expression studies in Giardia lamblia using quantitative real-time PCR. Gene 581:21–30

    CAS  PubMed  Google Scholar 

  28. Shi C, Yang F, Zhu X et al (2016) Evaluation of housekeeping genes for quantitative real-time PCR analysis of Bradysia odoriphaga (Diptera: Sciaridae). Int J Mol Sci 17:1–19

    Google Scholar 

  29. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dai F, Zhao X, Tang C et al (2018) Identification and validation of reference genes for qRT-PCR analysis in mulberry (Morus alba L.). PLoS One 13:e0194129

    PubMed  PubMed Central  Google Scholar 

  31. Wang B, Du H, Yao Z et al (2018) Validation of reference genes for accurate normalization of gene expression with quantitative real-time PCR in Haloxylon ammodendron under different abiotic stresses. Physiol Mol Biol Pla 24:455–463

    CAS  Google Scholar 

  32. Batista DS, Moreira VS, Felipe SHS et al (2019) Reference gene selection for qRT-PCR in Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen] as affected by various abiotic factors. Plant Cell Tiss Org 138:97–107. https://doi.org/10.1007/s11240-019-01606-6

    Article  CAS  Google Scholar 

  33. Vandesompele J, De PK, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–12

    Google Scholar 

  34. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of realtime quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    CAS  PubMed  Google Scholar 

  35. Xie F, Xiao P, Chen D et al (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84

    CAS  Google Scholar 

  36. Radonić A, Thulke S, Mackay IM et al (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Bioph Res Co 313:856–862

    Google Scholar 

  37. Souza VC (2016) Análise do Transcriptoma de Lippia alba (Mill.) N.E.Br. (Verbenaceae) por RNAseq Visando a Identificação de Enzimas Terpeno Sintases. Dissertation, Federal University of Juiz de Fora

  38. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291

    CAS  PubMed  Google Scholar 

  39. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ruijter JM, Van Der Velden S, Ilgun A (2009) LinReg PCR (11.0) Analysis of quantitative RT-PCR data. Gene Quantification. https://www.gene-quantification.de/LinRegPCR_help_manual_v11.0.pdf. Accessed in 11 Sept 2019

  41. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    CAS  PubMed  Google Scholar 

  42. Liang L, He Z, Yu H et al (2020) Selection and validation of reference genes for gene expression studies in Codonopsis pilosula based on transcriptome sequence data. Sci Rep 10:1–13

    Google Scholar 

  43. Knopkiewicz M, Wojtaszek P (2019) Validation of reference genes for gene expression analysis using quantitative polymerase chain reaction in pea lines (Pisum sativum) with different lodging susceptibility. Ann Appl Biol 174:86–91

    CAS  Google Scholar 

  44. Adams KL (2007) Evolution of duplicate gene expression in polyploid and hybrid plants. J Hered 98:136–141

    CAS  PubMed  Google Scholar 

  45. Giménez MJ, Pistón F, Atienza SG (2011) Identification of suitable reference genes for normalization of qPCR data in comparative transcriptomics analyses in the Triticeae. Planta 233:163–173

    PubMed  Google Scholar 

  46. Vieira A, Talhinhas P, Loureiro A et al (2011) Validation of RT-qPCR reference genes for in planta expression studies in Hemileia vastatrix, the causal agent of coffee leaf rust. Fungal Biol Rev 115:891–901

    CAS  Google Scholar 

  47. Liu J, Wang Q, Sun M (2014) Selection of reference genes for quantitative real-time PCR normalization in Panax ginseng at different stages of growth and in different organs. PLoS One 9:e112177. https://doi.org/10.1371/journal.pone.0112177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Soltis DE, Visger CJ, Soltis PS (2014) The polyploidy revolution then and now: Stebbins revisited. Am J Bot 101:1057–1078

    PubMed  Google Scholar 

  49. Payá-Milans M, Olmstead JW, Nunez G et al (2018) Comprehensive evaluation of RNA-seq analysis pipelines in diploid and polyploid species. GigaScience 7:1–18

    Google Scholar 

  50. Yang Z, Wang K, Aziz U et al (2020) Evaluation of duplicated reference genes for quantitative real-time PCR analysis in genome unknown hexaploid oat (Avena sativa L.). Plant Methods 16:1–14

    CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. S. Batista (UFPB) for data analysis help and V. C. Souza (UFJF) for providing the RNAseq data. This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (432412-2016-6 and 313740-2017-8), Fundação de Amparo à Pesquisa do Estado de Minas Gerais-Fapemig (CRA RED 0053-16), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Capes.

Author information

Authors and Affiliations

Authors

Contributions

EM, JL, and LN performed experiments, analyzed the data and wrote the manuscript. LV revised the manuscript and supervised the study. All authors read the paper and approved the final manuscript.

Corresponding author

Correspondence to Lyderson Facio Viccini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

The authors declare that they consent to participate to this study.

Consent for publication

The authors declare that they consent for publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, J.M.L., de Matos, E.M., de Queiroz Nascimento, L.S. et al. Validation of reference genes for quantitative gene expression in the Lippia alba polyploid complex (Verbenaceae). Mol Biol Rep 48, 1037–1044 (2021). https://doi.org/10.1007/s11033-021-06183-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06183-6

Keywords

Navigation