Skip to main content
Log in

Romidepsin hepatocellular carcinoma suppression in mice is associated with deregulated gene expression of bone morphogenetic protein and Notch signaling pathway components

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Recently, our group showed that Romidepsin, a histone deacetylase inhibitor (HDACi), suppressed diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in mice. In the present study, we investigated the effect of Romidepsin-treatment on gene expression levels of components of Bmp and Notch signaling pathways, which are both known to be aberrantly regulated in hepatocarcinogenesis. Total RNA from liver tissue samples and paraffin-embedded livers were retrieved from a recent experiment where C57BL/6 mice were treated with Romidepsin 10 months after DEN challenge and sacrificed 2 months later. RT qPCR was used for quantification of gene expression and immunohistochemistry for in situ protein detection. Regarding Bmp pathway, Romidepsin HCC-suppression was found to correlate significantly with Bmp2 and Bmp7 ligand up- and down-regulation, respectively. Intracellularly, Romidepsin-treated HCC mice exhibited a significant elevation of Bmp-inhibitor Smurf2 and Bmp-target gene Id3, as compared to the HCC untreated controls. Concerning Notch signaling, higher expression levels of ligands Jag1/Dll4, accompanied by a decreased expression of receptor Notch2, were identified in the Romidepsin-treated group. Τhe anti-oncogenic effect of Romidepsin, also correlated significantly with an increased expression of Hes1 target, as well as an up- and down-regulation of Klf4 and Sox9 transcription factors, respectively. Moreover, the cancer-related genes Snai2 and p21, known to be involved in many signaling pathways, including Bmp and Notch, were also found to be downregulated in Romidepsin-treated mice. Romidepsin HCC suppression is associated with gene expression deregulation of selective components of both Bmp and Notch signaling cascades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Bambi:

Bmp and activin membrane-bound inhibitor

Bim:

BCL2-like 11

Bmp:

Bone morphogenetic proteins

Chrd:

Chordin

Co-Smad:

Common-mediator Smad

DEN:

Diethylnitrosamine

Dll:

Delta ligand

Grem1:

Gremlin 1

HAT:

Histone acetyltransferases

HDAC:

Histone deacetylases

HDACi:

Histone deacetylase inhibitors

Hes1:

Hairy/enhancer of split 1

Hey1:

Hes-related 1

Id:

Inhibitor of DNA binding

I-Smads:

Inhibitory Smads

Jag:

Jagged

Klf4:

Kruppel-like factor 4

NICD:

Notch intracellular domain

Nog:

Noggin

p300:

E1A binding protein p300

R-Smads:

Receptor-regulated Smads

Runx:

Runt-domain transcription factors

Ski:

SKI family transcriptional corepressor

Smurfs:

Smad-ubiquitination regulatory factors

Snai2:

Snail family zinc finger 2

SnoN:

SKI-like

Sox9:

Sex determining region Y-box 9

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Heimbach JK, Kulik LM, Finn RS et al (2018) AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 67:358–380. https://doi.org/10.1002/hep.29086

    Article  PubMed  Google Scholar 

  3. Vogel A, Cervantes A, Chau I et al (2019) Hepatocellular carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Incidence and epidemiology. Ann Oncol. https://doi.org/10.1093/annonc/mdy308

  4. Craig AJ, von Felden J, Garcia-Lezana T et al (2020) Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 17:139–152

    Article  PubMed  Google Scholar 

  5. Yang JD, Hainaut P, Gores GJ et al (2019) A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 16:589–604

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chrun ES, Modolo F, Daniel FI (2017) Histone modifications: a review about the presence of this epigenetic phenomenon in carcinogenesis. Pathol Res Pract 213:1329–1339. https://doi.org/10.1016/J.PRP.2017.06.013

    Article  CAS  PubMed  Google Scholar 

  7. Neureiter D, Stintzing S, Kiesslich T, Ocker M (2019) Hepatocellular carcinoma: therapeutic advances in signaling, epigenetic and immune targets. World J Gastroenterol 25:3136–3150. https://doi.org/10.3748/wjg.v25.i25.3136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhao J, Gray SG, Greene CM, Lawless MW (2019) Unmasking the pathological and therapeutic potential of histone deacetylases for liver cancer. Expert Rev Gastroenterol Hepatol 13:247–256. https://doi.org/10.1080/17474124.2019.1568870

    Article  CAS  PubMed  Google Scholar 

  9. Tapadar S, Fathi S, Wu B et al (2020) Liver-targeting class I selective histone deacetylase inhibitors potently suppress hepatocellular tumor growth as standalone agents. Cancers (Basel) 12:3095. https://doi.org/10.3390/cancers12113095

    Article  CAS  Google Scholar 

  10. Fernández-Barrena MG, Arechederra M, Colyn L et al (2020) Epigenetics in hepatocellular carcinoma development and therapy: the tip of the iceberg. JHEP Rep 2:100167. https://doi.org/10.1016/j.jhepr.2020.100167

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hontecillas-Prieto L, Flores-Campos R, Silver A et al (2020) Synergistic enhancement of cancer therapy using HDAC inhibitors: opportunity for clinical trials. Front Genet 11:1113

    Article  Google Scholar 

  12. Davis H, Raja E, Miyazono K et al (2016) Mechanisms of action of bone morphogenetic proteins in cancer. Cytokine Growth Factor Rev 27:81–92

    Article  CAS  PubMed  Google Scholar 

  13. Strazzabosco M, Fabris L (2012) Notch signaling in hepatocellular carcinoma: guilty in association! Gastroenterology 143:1430–1434

    Article  CAS  PubMed  Google Scholar 

  14. Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  CAS  PubMed  Google Scholar 

  15. Bach DH, Park HJ, Lee SK (2018) The dual role of bone morphogenetic proteins in cancer. Mol Ther Oncolytics 8:1–13

    Article  PubMed  Google Scholar 

  16. Zhang Y, Li D, Feng F et al (2017) Progressive and prognosis value of Notch receptors and ligands in hepatocellular carcinoma: a systematic review and meta-analysis. Sci Rep 7:1–9

    Article  Google Scholar 

  17. Purow B (2012) Notch signaling in embryology and cancer. Adv Exp Med Biol 727:174–315. https://doi.org/10.1007/978-1-4614-0899-4

    Article  Google Scholar 

  18. Afaloniati H, Angelopoulou K, Giakoustidis A et al (2020) HDAC1/2 inhibitor romidepsin suppresses DEN-induced hepatocellular carcinogenesis in mice. Onco Targets Ther 13:5575–5588. https://doi.org/10.2147/OTT.S250233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  20. Karamanavi E, Angelopoulou K, Lavrentiadou S et al (2014) Urokinase-type plasminogen activator deficiency promotes neoplasmatogenesis in the colon of mice. Transl Oncol 7:174–187.e5. https://doi.org/10.1016/j.tranon.2014.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lin Z-S, Chu H-C, Yen Y-C et al (2012) Krüppel-like factor 4, a tumor suppressor in hepatocellular carcinoma cells reverts epithelial mesenchymal transition by suppressing slug expression. PLoS One 7:e43593. https://doi.org/10.1371/journal.pone.0043593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ghaleb AM, Yang VW (2017) Krüppel-like factor 4 (KLF4): what we currently know. Gene 611:27–37. https://doi.org/10.1016/j.gene.2017.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu J, Xia Y, Chen K et al (2016) Oncogenic role of the notch pathway in primary liver cancer. Oncol Lett 12:3–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu C, Liu L, Chen X et al (2016) Sox9 regulates self-renewal and tumorigenicity by promoting symmetrical cell division of cancer stem cells in hepatocellular carcinoma. Hepatology 64:117–129. https://doi.org/10.1002/hep.28509

    Article  CAS  PubMed  Google Scholar 

  25. Sionov RV, Vlahopoulos SA, Granot Z (2015) Regulation of Bim in health and disease. Oncotarget 6:23058–23134. https://doi.org/10.18632/oncotarget.5492

    Article  PubMed  PubMed Central  Google Scholar 

  26. Joo M, Kang YK, Kim MR et al (2001) Cyclin D1 overexpression in hepatocellular carcinoma. Liver 21:89–95. https://doi.org/10.1034/j.1600-0676.2001.021002089.x

    Article  CAS  PubMed  Google Scholar 

  27. Holczbauer Á, Gyöngyösi B, Lotz G et al (2013) Distinct claudin expression profiles of hepatocellular carcinoma and metastatic colorectal and pancreatic carcinomas. J Histochem Cytochem 61:294–305. https://doi.org/10.1369/0022155413479123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chuang LSH, Ito K, Ito Y (2013) RUNX family: regulation and diversification of roles through interacting proteins. Int J Cancer 132:1260–1271. https://doi.org/10.1002/ijc.27964

    Article  CAS  PubMed  Google Scholar 

  29. Sakai D, Tanaka Y, Endo Y et al (2005) Regulation of Slug transcription in embryonic ectoderm by β-catenin-Lef/Tcf and BMP-Smad signaling. Develop Growth Differ 47:471–482. https://doi.org/10.1111/j.1440-169X.2005.00821.x

    Article  CAS  Google Scholar 

  30. Pardali K, Kowanetz M, Heldin CH, Moustakas A (2005) Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21WAF1/Cip1. J Cell Physiol 204:260–272. https://doi.org/10.1002/jcp.20304

    Article  CAS  PubMed  Google Scholar 

  31. Ohkoshi S, Yano M, Matsuda Y (2015) Oncogenic role of p21 in hepatocarcinogenesis suggests a new treatment strategy. World J Gastroenterol 21:12150. https://doi.org/10.3748/wjg.v21.i42.12150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abbas T, Dutta A (2009) P21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 9:400–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Georgakilas AG, Martin OA, Bonner WM (2017) p21: a two-faced genome guardian. Elsevier Ltd, Amsterdam

    Google Scholar 

  34. Tsilimigras DI, Ntanasis-Stathopoulos I, Moris D et al (2018) Histone deacetylase inhibitors in hepatocellular carcinoma: a therapeutic perspective. Surg Oncol 27:611–618. https://doi.org/10.1016/j.suronc.2018.07.015

    Article  PubMed  Google Scholar 

  35. Sun W-J, Huang H, He B et al (2017) Romidepsin induces G2/M phase arrest via Erk/cdc25C/cdc2/cyclinB pathway and apoptosis induction through JNK/c-Jun/caspase3 pathway in hepatocellular carcinoma cells. Biochem Pharmacol 127:90–100

    Article  CAS  PubMed  Google Scholar 

  36. Zhou H, Cai Y, Liu D et al (2018) Pharmacological or transcriptional inhibition of both HDAC1 and 2 leads to cell cycle blockage and apoptosis via p21Waf1/Cip1 and p19INK4d upregulation in hepatocellular carcinoma. Cell Prolif 51:e12447. https://doi.org/10.1111/cpr.12447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu G, Huang F, Chen Y et al (2020) High levels of BMP2 promote liver cancer growth via the activation of myeloid-derived suppressor cells. Front Oncol 10:194. https://doi.org/10.3389/fonc.2020.00194

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zheng Y, Wang X, Wang H et al (2014) Bone morphogenetic protein 2 inhibits hepatocellular carcinoma growth and migration through downregulation of the PI3K/AKT pathway. Tumor Biol 35:5189–5198. https://doi.org/10.1007/s13277-014-1673-y

    Article  CAS  Google Scholar 

  39. Li W, Cai HX, Ge XM et al (2013) Prognostic significance of BMP7 as an oncogene in hepatocellular carcinoma. Tumor Biol 34:669–674. https://doi.org/10.1007/s13277-012-0594-x

    Article  CAS  Google Scholar 

  40. Maegdefrau U, Bosserhoff AK (2012) BMP activated Smad signaling strongly promotes migration and invasion of hepatocellular carcinoma cells. Exp Mol Pathol 92:74–81. https://doi.org/10.1016/j.yexmp.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  41. Koganti P, Levy-Cohen G, Blank M (2018) Smurfs in protein homeostasis, signaling, and cancer. Front Oncol 8:295

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ho CC, Zhou X, Mishina Y, Bernard DJ (2011) Mechanisms of bone morphogenetic protein 2 (BMP2) stimulated inhibitor of DNA binding 3 (Id3) transcription. Mol Cell Endocrinol 332:242–252. https://doi.org/10.1016/j.mce.2010.10.019

    Article  CAS  PubMed  Google Scholar 

  43. Lasorella A, Uo T, Iavarone A (2001) Id proteins at the cross-road of development and cancer. Oncogene 20:8326–8333. https://doi.org/10.1038/sj.onc.1205093

    Article  CAS  PubMed  Google Scholar 

  44. Kong Y, Cui H, Zhang H (2011) Smurf2-mediated ubiquitination and degradation of Id1 regulates p16 expression during senescence. Aging Cell 10:1038–1046. https://doi.org/10.1111/j.1474-9726.2011.00746.x

    Article  CAS  PubMed  Google Scholar 

  45. Croquelois A, Blindenbacher A, Terracciano L et al (2005) Inducible inactivation of Notch1 causes nodular regenerative hyperplasia in mice. Hepatology 41:487–496. https://doi.org/10.1002/hep.20571

    Article  CAS  PubMed  Google Scholar 

  46. Liu ZH, Dai XM, Du B (2015) Hes1: a key role in stemness, metastasis and multidrug resistance. Cancer Biol Ther 16:353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hsu H-T, Wu P-R, Chen C-J et al (2014) High cytoplasmic expression of Krüppel-like factor 4 is an independent prognostic factor of better survival in hepatocellular carcinoma. Int J Mol Sci 15:9894–9906. https://doi.org/10.3390/ijms15069894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tetreault MP, Yang Y, Katz JP (2013) Krüppel-like factors in cancer. Nat Rev Cancer 13:701–713

    Article  CAS  PubMed  Google Scholar 

  49. Guo X, Xiong L, Sun T et al (2012) Expression features of SOX9 associate with tumor progression and poor prognosis of hepatocellular carcinoma. Diagn Pathol 7:44. https://doi.org/10.1186/1746-1596-7-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suzuki A, Tsutomi Y, Miura M, Akahane K (1999) Caspase 3 inactivation to suppress Fas-mediated apoptosis: identification of binding domain with p21 and ILP and inactivation machinery by p21. Oncogene 18:1239–1244. https://doi.org/10.1038/sj.onc.1202409

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Bodossaki Foundation for the kind donation of the real-time PCR instrumentation.

Funding

This work was funded as Scholarship by the Experimental, Educational and Research Center ELPEN Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina Angelopoulou.

Ethics declarations

Conflicts of interest

No conflicts of interest.

Ethical approval

Ethical approval and licensing (License reference no 4956/09-08-2012) were provided by the competent National Veterinary Administration Authorities according to Greek legislative (Decree no. 2015/92, 160/91) and European Communities Council directive (no. 86/609/EEC).

Consent to participate

All authors consent for participation.

Consent for publication

All authors consent for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afaloniati, H., Poutahidis, T., Giakoustidis, A. et al. Romidepsin hepatocellular carcinoma suppression in mice is associated with deregulated gene expression of bone morphogenetic protein and Notch signaling pathway components. Mol Biol Rep 48, 551–562 (2021). https://doi.org/10.1007/s11033-020-06089-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-06089-9

Keywords

Navigation