Skip to main content
Log in

Molecular analysis of a fibrin-degrading enzyme from Bacillus subtilis K2 isolated from the Indonesian soybean-based fermented food moromi

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The screening of proteolytic and fibrinolytic bacteria from moromi (an Indonesian soybean-based fermented food) yielded a number of isolates. Based on morphological and biochemical analyses and sequencing of the 16S rRNA gene, the isolate that exhibited the highest proteolytic and fibrinolytic activity was identified as Bacillus subtilis K2. The study was performed to analyze molecular characteristic of a fibrin-degrading enzyme from B. subtilis K2. BLASTn analysis of the nucleotide sequence encoding this fibrinolytic protein demonstrated 73.6% homology with the gene encoding the fibrin-degrading enzyme nattokinase of the B. subtilis subsp. natto, which was isolated from fermented soybean in Japan. An analysis of the putative amino-acid sequence of this protein indicated that it is a serine protease enzyme with aspartate, histidine, and serine in the catalytic triad. This enzyme was determined to be a 26-kDa molecule, as confirmed with a zymogram assay. Further bioinformatic analysis using Protparam demonstrated that the enzyme has a pI of 6.02, low instability index, high aliphatic index, and low GRAVY value. Molecular docking analysis using HADDOCK indicated that there are favorable interactions between subtilisin K2 and the fibrin substrate, as demonstrated by a high binding affinity (ΔG: − 19.4 kcal/mol) and low Kd value (6.3E-15 M). Overall, the study concluded that subtilisin K2 belong to serine protease enzyme has strong interactions with its fibrin substrate and fibrin can be rapidly degraded by this enzyme, suggesting its application as a treatment for thrombus diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wei Q, Wang H, Chen Z (2013) Profiling of dynamic changes in the microbial community during the soy sauce fermentation process. Appl Microbiol Biotechnol 97:9111–9119. https://doi.org/10.1007/s00253-013-5146-9

    Article  CAS  PubMed  Google Scholar 

  2. Chen YJ, Wu KP, Kim S, Falzon L, Inouye M, Baum J (2008) Backbone NMR assignments of DFP-inhibited mature subtilisin E. Biomol NMR Assign 2(2):131–133. https://doi.org/10.1007/s12104-008-9103-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H (1987) A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a typical and popular soybean food in the Japanese diet. Experentia 43(10):1110–1111. https://doi.org/10.1007/bf01956052

    Article  CAS  Google Scholar 

  4. Kim GM, Lee AR, Lee KW, Park JY, Park AY, Chun J, Cha J, Song YS, Kim JH (2009) Characterization of a 27 kDa fibrinolytic enzyme from Bacillus amyloliquefaciens CH51 isolated from cheonggukjang. J Microbiol Biotechnol 19(9):997–1004. https://doi.org/10.4014/jmb.0811.600

    Article  CAS  PubMed  Google Scholar 

  5. Wei X, Luo M, Xu L, Zhang Y, Lin X, Kong P, Liu H (2011) Production of fibrinolytic enzyme from Bacillus amyloliquefaciens by fermentation of chickpeas, with the evaluation of the anticoagulant and antioxidant properties of chickpeas. J Agric Food Chem 59:3957–3963. https://doi.org/10.1021/jf1049535

    Article  CAS  PubMed  Google Scholar 

  6. Jo HD, Lee HA, Jeong S, Kim JH (2011) Purification and characterization of a major fibrinolytic enzyme from Bacillus amyloliquefaciens MJ5-41 isolated from meju. J Microbiol Biotechnol 21(11):1166–1173. https://doi.org/10.4014/jmb.1106.06008

    Article  CAS  PubMed  Google Scholar 

  7. Yoshimoto T, Oyama H, Honda T, Tone H, Takeshita T (1988) Cloning and expression of subtilisin amylosacchariticus gene. J Biochem 103:1060–1065. https://doi.org/10.1093/oxfordjournals.jbchem.a122380

    Article  CAS  PubMed  Google Scholar 

  8. Balaraman K, Prabakaran G (2007) Production and purification of a fibrinolytic enzyme (thrombinase) from Bacillus sphaericus. Indian J Med Res 126:459–464

    CAS  PubMed  Google Scholar 

  9. Kim W, Choi K, Kim Y, Park H, Choi J, Lee Y, Oh H, Kwon I, Lee S (1996) Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11–4 screened from chungkook-jang. Appl Environ Microbiol 62(7):2482–2488

    Article  CAS  Google Scholar 

  10. Fuka MM, Engel M, Haesler F, Welzl G, Munch JC, Schloter M (2008) Diversity of proteolytic community encoding for subtilisin in an arable field: spatial and temporal variability. Biol Fertil Soils 45(2):185–191. https://doi.org/10.1007/s00374-008-0319-x

    Article  Google Scholar 

  11. Głowacka AE, Podstawka E, Szczȩsna-Antczak MH, Kalinowska H, Antczak T (2005) Kinetic and molecular properties of Bacillus subtilis IBTC-3 subtilisin. Comp Biochem Physiol B 140(2):321–331. https://doi.org/10.1016/j.cbpc.2004.10.015

    Article  CAS  PubMed  Google Scholar 

  12. Weng Y, Yao J, Sparks S, Wang KY (2017) Nattokinase: an oral antithrombotic agent for the prevention of cardiovascular disease. Int J Mol Sci 18(3):1–13. https://doi.org/10.3390/ijms18030523

    Article  CAS  Google Scholar 

  13. Agrebi R, Haddar A, Hajji M, Frikha F, Manni L, Nasri M (2009) Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26: characterization and statistical media optimization. Can J Microbiol 55:1049–1061. https://doi.org/10.1139/W09-057

    Article  CAS  PubMed  Google Scholar 

  14. Sung JH, Ahn SJ, Kim NY, Jeong SK, Kim JK, Chung JK, Lee HH (2010) Purification, molecular cloning, and biochemical characterization of subtilisin JB1 from a newly isolated Bacillus subtilis JB1. App Biochem Biotechnol 162(3):900–911. https://doi.org/10.1007/s12010-009-8830-6

    Article  CAS  Google Scholar 

  15. Syahbanu F, Kezia E, Puera N, Giriwono PE, Tjandrawinata RR, Suhartono MT (2020) Fibrinolytic bacteria of Indonesian fermented soybean: preliminary study on enzyme activity and protein profile. Food Sci Technol. https://doi.org/10.1590/fst.23919

    Article  Google Scholar 

  16. Jeong SJ, Kwon GH, Chun J, Kim JS, Park C, Kwon DAEY, Kim JH (2007) Cloning of fibrinolytic enzyme gene from isolated from and its expression in protease-deficient strains. J Microbiol Biotechnol 17(6):1018–1023

    CAS  PubMed  Google Scholar 

  17. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning a laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  18. Hwang KJ, Choi KH, Kim MJ, Park CS, Cha J (2007) Purification and characterization of a new fibrinolytic enzyme of Bacillus licheniformis KJ-31, isolated from Korean traditional jeot-gal. J Microbiol Biotechnol 17(9):1469–1476

    CAS  PubMed  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

    Article  CAS  Google Scholar 

  20. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385. https://doi.org/10.1093/nar/gkg520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. DeLano WL (2002) Pymol: an open-source molecular graphics tool. CCP4 Newslett Protein Crystallogr 40:82–92

    Google Scholar 

  22. Geourjon C, Deléage G (1995) Sopma: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics 11(6):681–684. https://doi.org/10.1093/bioinformatics/11.6.681

    Article  CAS  Google Scholar 

  23. Lovell SC, Davis IW, Adrendall WB, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by C alpha geometry : phi, psi, and c beta deviation. Proteins Struct Funct Bioinf 50:437–450. https://doi.org/10.1002/prot.10286

    Article  CAS  Google Scholar 

  24. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291. https://doi.org/10.1107/s0021889892009944

    Article  CAS  Google Scholar 

  25. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(2):407–410. https://doi.org/10.1093/nar/gkm290

    Article  Google Scholar 

  26. Einsenberg D, Luthy R, Bowie J (1997) Verify3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404. https://doi.org/10.1016/s0076-6879(97)77022-8

    Article  Google Scholar 

  27. Maiti R, Van Domselaar GH, Zhang H, Wishart DS (2004) SuperPose: a simple server for sophisticated structural superposition. Nucleic Acids Res 32:590–594. https://doi.org/10.1093/nar/gkh477

    Article  CAS  Google Scholar 

  28. de Vries SJ, Bonvin AMJJ (2011) CPORT: a consensus interface predictor and its performance in prediction-driven docking with HADDOCK. PLoS ONE. https://doi.org/10.1371/journal.pone.0017695

    Article  PubMed  PubMed Central  Google Scholar 

  29. Van Zundert GCP, Rodrigues JPGLM, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin AMJJ (2016) The HADDOCK2.2 web server: user-friendly integrative modeling of biomolecular complexes. J Mol Biol 428(4):720–725. https://doi.org/10.1016/j.jmb.2015.09.014

    Article  CAS  PubMed  Google Scholar 

  30. Cukuroglu E, Gursoy A, Keskin O (2012) HotRegion: a database of predicted hot spot clusters. Nucleic Acids Res 40(D1):829–833. https://doi.org/10.1093/nar/gkr929

    Article  CAS  Google Scholar 

  31. Xue LC, Rodrigues JP, Kastritis PL, Bonvin AMJJ, Vangone A (2016) PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics 32(23):3676–3678. https://doi.org/10.1093/bioinformatics/btw514

    Article  CAS  PubMed  Google Scholar 

  32. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134. https://doi.org/10.1093/protein/8.2.127

    Article  CAS  PubMed  Google Scholar 

  33. Gholami A, Shahin S, Mohkam M, Nezafat N, Ghasemi Y (2015) Cloning, characterization, and bioinformatics analysis of novel cytosine deaminase from Escherichia coli AGH09. Int J Pept Res Ther 21(3):365–374. https://doi.org/10.1007/s10989-015-9465-9

    Article  CAS  Google Scholar 

  34. Chakraborty N, Besra A, Basak J (2020) Molecular cloning of an amino acid permease gene and structural characterization of the protein in common bean (Phaseolus vulgaris L.). Mol Biotechnol 62(3):210–217. https://doi.org/10.1007/s12033-020-00240-4

    Article  CAS  PubMed  Google Scholar 

  35. Kumar S, Tsai C, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13(3):179–191. https://doi.org/10.1093/protein/13.3.179

    Article  CAS  PubMed  Google Scholar 

  36. Santiveri CM, Santoro J, Rico M, Énez MAJIM (2004) Factors involved in the stability of isolated beta sheets : turn sequence, beta sheet twisting, and hydrophobic surface burial. Protein Sci 13:1134–1147. https://doi.org/10.1110/ps.03520704.also

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Irajie C, Mohkam M, Nezafat N, Mohammadi F (2017) In silico analysis of nattokinase from Bacillus subtilis sp natto. Int J Pharm Clin Res 9(4):286–292. https://doi.org/10.25258/ijpcr.v9i04.8535

    Article  Google Scholar 

  38. Moreira IS, Koukos PI, Melo R, Almeida JG, Antonio JP, Schaarschmidt J, Trellet M, Gümüş ZH, Costa J, Bonvin AMJJ (2017) SpotOn: high accuracy identification of protein-protein interface hot-spots. Sci Rep 7(1):8007. https://doi.org/10.1038/s41598-017-08321-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sarvagalla S, Cheung CHA, Tsai JY, Hsieh HP, Coumar MS (2016) Disruption of protein-protein interactions: hot spot detection, structure-based virtual screening and in vitro testing for the anti-cancer drug target-survivin. RSC Adv 6(38):31947–31959. https://doi.org/10.1039/c5ra22927h

    Article  CAS  Google Scholar 

  40. Kastritis PL, Rodrigues JPGLM, Folkers GE, Boelens R, Bonvin AMJJ (2014) Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface. J Mol Biol 426(14):2632–2652. https://doi.org/10.1016/j.jmb.2014.04.017

    Article  CAS  PubMed  Google Scholar 

  41. Wu JX, Zhao XY, Pan R, He RQ (2007) Glycosylated trypsin-like proteases from earthworm Eisenia fetida. Int J Biol Macromol 40:399–406. https://doi.org/10.1016/j.ijbiomac.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  42. Yogesh D, Halami PM (2015) Evidence that multiple proteases of Bacillus subtilis can degrade fibrin and fibrinogen. Int Food Res J 22(4):1662–1667

    CAS  Google Scholar 

  43. Suwanmanon K, Hsieh PC (2014) Effect of γ-aminobutyric acid and nattokinase-enriched fermented beans on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. J Food Drug Anal 22(4):485–491. https://doi.org/10.1016/j.jfda.2014.03.005

    Article  CAS  PubMed  Google Scholar 

  44. Nailufar F, Tjandrawinata RR, Suhartono MT (2016) Thrombus degradation by fibrinolytic enzyme of Stenotrophomonas sp. originated from Indonesian soybean-based fermented food on Wistar rats. Adv Pharmacol Sci 2016:1–9. https://doi.org/10.1155/2016/4206908

    Article  CAS  Google Scholar 

  45. Kurosawa Y, Nirengi S, Homma T, Esaki K, Ohta M, Clark JF, Hamaoka T (2015) A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci Rep 5:1–7. https://doi.org/10.1038/srep11601

    Article  CAS  Google Scholar 

  46. Dabbagh F, Negahdaripour M, Berenjian A, Behfar A, Mohammadi F, Zamani M, Irajie C, Ghasemi Y (2014) Nattokinase: production and application. Appl Microbiol Biotechnol 98(22):9199–9206. https://doi.org/10.1007/s00253-014-6135-3

    Article  CAS  PubMed  Google Scholar 

  47. Mohanasrinivasan V, Mohanapriya A, Potdar S, Chatterji S, Konne S, Kumari S, Keziah M, Subathra DC (2017) In vitro and in silico studies on fibrinolytic activity of nattokinase: a clot buster from Bacillus sp. Front Biol 12(3):219–225. https://doi.org/10.1007/s11515-017-1453-3

    Article  CAS  Google Scholar 

  48. Ferrall-Fairbanks MC, West DM, Douglas SA, Averett RD, Platt MO (2018) Computational predictions of cysteine cathepsin-mediated fibrinogen proteolysis. Protein Sci 27(3):714–724. https://doi.org/10.1002/pro.3366

    Article  CAS  PubMed  Google Scholar 

  49. Zheng Z, Zuo Z, Liu Z, Tsai K (2005) Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto a novel nucleophilic catalytic mechanism for nattokinase. J Mol Graph Model 23:373–380. https://doi.org/10.1016/j.jmgm.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  50. Ezat AA, El-Bialy NS, Mostafa HIA, Ibrahim MA (2014) Molecular docking investigation of the binding interactions of macrocyclic inhibitors with HCV NS3 protease and its mutants (R155K, D168A, and A156V). Protein J 33(1):32–47. https://doi.org/10.1007/s10930-013-9538-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Master Program of Education Leading to Doctoral Degree for Excellent Graduates (PMDSU), Ministry of Research, Technology and Higher Education of the Republic of Indonesia (RISTEKDIKTI) [Grant No. 025/E3/2017]. This research was supported By Research Grant for acceleration of PhD graduate (Fathma Syahbanu) from the Ministry of Higher Education 2015–2020 to Bogor Agricultural University (IPB) with Prof. Maggy T Suhartono as the Principle Investigator and Major Advisor.

Funding

The author(s) received financial support for the research and/or publication from Master Program of Education Leading to Doctoral Degree for Excellent Graduates (PMDSU), Ministry of Research, Technology and Higher Education of the Republic of Indonesia (RISTEKDIKTI) [Grant No. 025/E3/2017].

Author information

Authors and Affiliations

Authors

Contributions

FS: writing-original draft preparation, editing, methodology, software; PEG: data curation, validation, bioinformatic methodology; RRT: investigation, data curation, editing: MTS: supervision, conceptualization, methodology, validation.

Corresponding author

Correspondence to Maggy T. Suhartono.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

The bacteria as source of the gene and enzyme was isolated from local soy fermented food. The data taken for result and discussion were original and came from the experimets stated in the methodology. This research did not involve the type of work that could be a threat to public health, does not produce any biological agents or toxins.

Research involving human and animal participants

This research did not use any animal or human subject. All methodology applied were in accordance with the reference cited.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syahbanu, F., Giriwono, P.E., Tjandrawinata, R.R. et al. Molecular analysis of a fibrin-degrading enzyme from Bacillus subtilis K2 isolated from the Indonesian soybean-based fermented food moromi. Mol Biol Rep 47, 8553–8563 (2020). https://doi.org/10.1007/s11033-020-05898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05898-2

Keywords

Navigation