Skip to main content
Log in

Inhibition of semaphorin 4D enhances chemosensitivity by increasing 5-fluorouracile-induced apoptosis in colorectal cancer cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 06 January 2021

This article has been updated

Abstract

Overexpression of semaphorin 4D (SEMA4D), an immune semaphorin, is found in various human malignancies, including colorectal cancer (CRC). In this study, we explored the relationship between silencing SEMA4D expression and 5-fluorouracil (5-FU) response in the colorectal cancer cell line. SW48 cells were transfected with a short interfering RNA (siRNA) in order to silence SEMA4D gene expression and then exposed to 5-FU for 48 h. The down-regulation of SEMA4D expression was confirmed by qRT-PCR and the particular concentration of 5-FU was acquired using MTT assay. Flow cytometry and western blot were used to evaluate apoptosis rate and pro- and anti-apoptotic expression levels of proteins involved in apoptosis including Bax, Bcl-2, P53, and caspase-3. Other oncogenic activities including epithelial-mesenchymal transition (EMT) process, cancer stem cell (CSC) markers, and β-catenin pathway were investigated using qRT-PCR, and western blot. The proliferation was analyzed via colony formation test and cell invasion was assessed by transwell assay. Our data demonstrate that SEMA4D silencing results in strikingly elevated apoptosis in response to 5-FU treatment and leads to down-regulation of Bcl-2 and overexpression of Bax, P53, and caspase-3 in protein levels. Furthermore, the mRNA and protein expression levels of β-catenin, as well as transcript expressions of CSCs and EMT markers, were remarkably diminished. However, mRNA expression of E-cadherin as an epithelial marker was significantly increased in 5-FU treatment combined with siRNA SEMA4D. This study implicates that the silencing of SEMA4D by siRNA promotes the chemosensitivity of SW48 cells to 5-FU and it may be a potential therapeutic agent for colon cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  1. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 68(6):394–424

    Article  Google Scholar 

  2. Ghanbarian M, Afgar A, Yadegarazari R et al (2018) Through oxaliplatin resistance induction in colorectal cancer cells, increasing ABCB1 level accompanies decreasing level of miR-302c-5p, miR-3664-5p and miR-129-5p. Biomed Pharmacother 108:1070–1080

    Article  CAS  PubMed  Google Scholar 

  3. Heydari K, Saidijam M, reza Sharifi M et al (2018) The effect of miR-200c inhibition on chemosensitivity (5-fluorouracil) in colorectal cancer. Pathol Oncol Res 24(1):145–151

    Article  CAS  PubMed  Google Scholar 

  4. Buhrmann C, Kunnumakkara AB, Popper B et al (2020) Calebin A potentiates the effect of 5-FU and TNF-β (lymphotoxin α) against human colorectal cancer cells: potential role of NF-κB. Int J Mol Sci 21(7):2393

    Article  CAS  PubMed Central  Google Scholar 

  5. Kaufmann SH, Earnshaw WC (2000) Induction of apoptosis by cancer chemotherapy. Exp Cell Res 256(1):42–49

    Article  CAS  PubMed  Google Scholar 

  6. Jain S, Pathak K, Vaidya A (2018) Molecular therapy using siRNA: recent trends and advances of multi target inhibition of cancer growth. Int J Biol Macromol 116:880–892

    Article  CAS  PubMed  Google Scholar 

  7. Ayob AZ, Ramasamy TS (2018) Cancer stem cells as key drivers of tumour progression. J Biomed Sci 25(1):20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jongbloets BC, Pasterkamp RJ (2014) Semaphorin signalling during development. Development 141(17):3292–3297. doi:https://doi.org/10.1242/dev.105544

    Article  CAS  PubMed  Google Scholar 

  9. Vadasz Z, Attias D, Kessel A et al (2010) Neuropilins and semaphorins—from angiogenesis to autoimmunity. Autoimmun Rev 9(12):825–829

    Article  CAS  PubMed  Google Scholar 

  10. Rezaeepoor M, Shapoori S, Ganjalikhani-hakemi M et al (2017) Decreased expression of Sema3A, an immune modulator, in blood sample of multiple sclerosis patients. Gene 610:59–63

    Article  CAS  PubMed  Google Scholar 

  11. Neufeld G, Mumblat Y, Smolkin T et al (2016) The role of the semaphorins in cancer. Cell adhesion migration 10(6):652–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Conrotto P, Valdembri D, Corso S et al (2005) Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood 105(11):4321–4329

    Article  CAS  PubMed  Google Scholar 

  13. Ikeya T, Maeda K, Nagahara H et al (2016) The combined expression of Semaphorin4D and PlexinB1 predicts disease recurrence in colorectal cancer. BMC Cancer 16(1):525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kato S, Kubota K, Shimamura T et al (2011) Semaphorin 4D, a lymphocyte semaphorin, enhances tumor cell motility through binding its receptor, plexinB1, in pancreatic cancer. Cancer Sci 102(11):2029–2037

    Article  CAS  PubMed  Google Scholar 

  15. Worzfeld T, Swiercz JM, Looso M et al (2012) ErbB-2 signals through Plexin-B1 to promote breast cancer metastasis. J Clin Investig 122(4):1296–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen Y, Zhang L, Lv R et al (2013) Overexpression of Semaphorin4D indicates poor prognosis and prompts monocyte differentiation toward M2 macrophages in epithelial ovarian cancer. Asian Pac J Cancer Prev 14(10):5883–5890

    Article  PubMed  Google Scholar 

  17. Malik MFA, Ye L, Jiang WG (2015) Reduced expression of semaphorin 4D and plexin-B in breast cancer is associated with poorer prognosis and the potential linkage with oestrogen receptor. Oncol Rep 34(2):1049–1057

    Article  CAS  PubMed  Google Scholar 

  18. Chen Y, Zhang L, Pan Y et al (2012) Over-expression of semaphorin4D, hypoxia-inducible factor-1α and vascular endothelial growth factor is related to poor prognosis in ovarian epithelial cancer. Int J Mol Sci 13(10):13264–13274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liu H, Yang Y, Xiao J et al (2014) Semaphorin 4D expression is associated with a poor clinical outcome in cervical cancer patients. Microvasc Res 93:1–8

    Article  CAS  PubMed  Google Scholar 

  20. Mu L, Wang J, Guo X et al (2014) Correlation and clinical significance of expressions of HIF-1α and Sema4D in colorectal carcinoma tissues. Chin J Gastrointest Surg [Zhonghua wei chang wai ke za zhi] 17(4):388–392

    Google Scholar 

  21. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101

    Article  CAS  PubMed  Google Scholar 

  22. Samadi P, Afshar S, Amini R et al (2019) Let-7e enhances the radiosensitivity of colorectal cancer cells by directly targeting insulin‐like growth factor 1 receptor. J Cell Physiol 234(7):10718–10725

    Article  CAS  PubMed  Google Scholar 

  23. Buhrmann C, Yazdi M, Popper B et al (2018) Resveratrol chemosensitizes TNF-β-induced survival of 5-FU-treated colorectal cancer cells. Nutrients 10(7):888

    Article  PubMed Central  CAS  Google Scholar 

  24. Matsunaga Y, Bashiruddin NK, Kitago Y et al (2016) Allosteric inhibition of a semaphorin 4D receptor plexin B1 by a high-affinity macrocyclic peptide. Cell Chem Biol 23(11):1341–1350

    Article  CAS  PubMed  Google Scholar 

  25. Evans EE, Jonason AS, Bussler H et al (2015) Antibody blockade of semaphorin 4D promotes immune infiltration into tumor and enhances response to other immunomodulatory therapies. Cancer Immunol Res 3(6):689–701

    Article  CAS  PubMed  Google Scholar 

  26. Ch’ng ES, Kumanogoh A (2010) Roles of Sema4D and Plexin-B1 in tumor progression. Mol Cancer 9(1):251

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Wang J-S, Jing C-Q, Shan K-S et al (2015) Semaphorin 4D and hypoxia-inducible factor-1α overexpression is related to prognosis in colorectal carcinoma. World J Gastroenterol WJG 21(7):2191

    Article  CAS  PubMed  Google Scholar 

  28. Debatin K-M (2004) Apoptosis pathways in cancer and cancer therapy. Cancer Immunol Immunother 53(3):153–159

    Article  PubMed  Google Scholar 

  29. Ranjbarnejad T, Saidijam M, Moradkhani S et al (2017) Methanolic extract of Boswellia serrata exhibits anti-cancer activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells. Prostaglandins Other Lipid Mediat 131:1–8

    Article  CAS  PubMed  Google Scholar 

  30. Liu Y, Zhou H, Ma L et al (2016) MiR-214 suppressed ovarian cancer and negatively regulated semaphorin 4D. Tumor Biol 37(6):8239–8248

    Article  CAS  Google Scholar 

  31. Nakagawa Y, Kuranaga Y, Tahara T et al (2019) Induced miR-31 by 5‐fluorouracil exposure contributes to the resistance in colorectal tumors. Cancer Sci 110(8):2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li J, Hou N, Faried A et al (2009) Inhibition of autophagy by 3-MA enhances the effect of 5-FU-induced apoptosis in colon cancer cells. Ann Surg Oncol 16(3):761–771

    Article  PubMed  Google Scholar 

  33. Zhou X, Wang W, Li P et al (2016) Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in inducing gastric cancer cell apoptosis both in vitro and in vivo. Oncol Res Featuring Preclin Clin Cancer Ther 23(1–2):29–34

    Google Scholar 

  34. Knight T, Luedtke D, Edwards H et al (2019) A delicate balance-The BCL-2 family and its role in apoptosis, oncogenesis, and cancer therapeutics. Biochem Pharmacol 162:250–261

    Article  CAS  PubMed  Google Scholar 

  35. Cui J, Placzek W (2018) Post-transcriptional regulation of anti-apoptotic BCL2 family members. Int J Mol Sci 19(1):308

    Article  PubMed Central  CAS  Google Scholar 

  36. Jiang H, Chen C, Sun Q et al (2016) The role of semaphorin 4D in tumor development and angiogenesis in human breast cancer. OncoTargets Ther 9:5737

    Article  CAS  Google Scholar 

  37. Medema JP (2013) Cancer stem cells: the challenges ahead. Nat Cell Biol 15(4):338

    Article  CAS  PubMed  Google Scholar 

  38. Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29(34):4741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ndreshkjana B, Çapci A, Klein V et al (2019) Combination of 5-fluorouracil and thymoquinone targets stem cell gene signature in colorectal cancer cells. Cell Death Dis 10(6):1–16

    Article  CAS  Google Scholar 

  40. Findlay VJ, Wang C, Nogueira LM et al (2014) SNAI2 modulates colorectal cancer 5-fluorouracil sensitivity through miR145 repression. Mol Cancer Ther 13(11):2713–2726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Suryawanshi A, Tadagavadi RK, Swafford D et al (2016) Modulation of inflammatory responses by Wnt/β-catenin signaling in dendritic cells: a novel immunotherapy target for autoimmunity and cancer. Front Immunol 7:460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Peng Y, Zhang X, Feng X et al (2017) The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget 8(8):14089

    Article  PubMed  Google Scholar 

  43. Brabletz T, Jung A, Reu S et al (2001) Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci 98(18):10356–10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saifo MS, Rempinski DR, Rustum YM et al (2010) Targeting the oncogenic protein beta-catenin to enhance chemotherapy outcome against solid human cancers. Mol Cancer 9(1):310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim J-S, Crooks H, Foxworth A et al (2002) Proof-of-Principle: oncogenic β-catenin is a valid molecular target for the development of pharmacological inhibitors 1 supported by NIH Grants K01 CA87828, R55 CA95736, and R01 CA095736 and the Lombardi Cancer Center Support Grant P30 CA51008. TW is a V Foundation Scholar and the recipient of a Career Development Award from the American Society of Clinical Oncology. Mol Cancer Ther 1(14):1355–1359

    CAS  PubMed  Google Scholar 

  46. Thakur R, Mishra DP (2013) Pharmacological modulation of beta-catenin and its applications in cancer therapy. J Cell Mol Med 17(4):449–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Hamadan University of Medical Sciences under Grant Numbers 9705162835.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rezvan Najafi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, G., Rezaeepoor, M., Mohammadi, C. et al. Inhibition of semaphorin 4D enhances chemosensitivity by increasing 5-fluorouracile-induced apoptosis in colorectal cancer cells. Mol Biol Rep 47, 7017–7027 (2020). https://doi.org/10.1007/s11033-020-05761-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05761-4

Keywords

Navigation