Skip to main content
Log in

Production of ascorbic acid, total protein, callus and root in vitro of non-heading Chinese cabbage by tissue culture

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The objective of the present work was the selection of cultivar, suitable medium and explant type for callus, root production, ascorbic acid, total ascorbic acid, dehydroascorbic and total protein of non-heading Chinese cabbage in two cultivars ‘Caixin’ and ‘Suzhouqing’. We compared 10 types of MS media supplemented with 0.0, 1.0, 2.0 and 3.0 mg/l TDZ; 0.0, 0.25, 0.50 and 1.0 mg/l NAA and 0.0, 5.0, 7.5 and 9.0 mg/l AgNO3 and 5 kinds of explants as embryo, leaf, root, cotyledon and hypocotyl. Maximum frequency of callus fresh weight was recorded with hypocotyl explant, which were cultured on MS + 2.0 mg/l TDZ + 1.0 mg/l NAA + 9.0 mg/l AgNO3 in ‘Suzhouqing’, optimum callus dry weight was obtained on the same media. The highest result for root fresh and dry weight recorded with ‘Caixin’ with MS + 3.0 mg/l TDZ + 1.0 mg/l NAA + 9.0 mg/l AgNO3 when we used embryo as explant. The highest ascorbic acid content was found with callus cultured on MS + 1.0 mg/l TDZ + 0.25 mg/l NAA + 5.0 mg/l AgNO3, when used leaf explant in ‘Caixin’ or root in ‘Suzhouqing’, and there were no significant difference between them. While the highest value of total AsA content was registered with callus cultured on MS + 2.0 mg/l TDZ + 0.25 mg/l NAA + 5.0 mg/l AgNO3 extracted from cotyledon in ‘Caixin’. The highest content of DHA was registered with MS + 2.0 mg/l TDZ + 0.25 mg/l NAA + 5.0 mg/l AgNO3 with cotyledon in ‘Caixin’. Also, in ‘Caixin’ MS + 3.0 mg/l TDZ + 0.25 mg/l NAA + 5.0 mg/l AgNO3 recorded the highest value of total protein content with embryo explant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CKs:

Cytokinins

TDZ:

Thidiazuron

NAA:

Naphthalene acetic acid

AgNO3 :

Silver nitrate

AsA:

Ascorbic acid

T (AsA):

Total ascorbic acid

DHA:

Dehydroascorbic acid

TP:

Total protein

References

  1. Jahangir M, Kim HK, Choi YH, Verpoorte R (2009) Health-affecting compounds in Brassicaceae. Compr Rev Food Sci Food Saf 8(2):31–43

    CAS  Google Scholar 

  2. Sasaki K, Takahashi T (2002) A flavonoid from (Brassica rapa) flower as the UV-absorbing nectar guide. Phytochemistry 61(3):339–343

    CAS  PubMed  Google Scholar 

  3. Fernandes F, Valentão P, Sousa C, Pereira JA, Seabra RM, Andrade PB (2007) Chemical and antioxidative assessment of dietary turnip (Brassica rapa var rapa L.). Food Chem 105(3):1003–1010

    CAS  Google Scholar 

  4. Tabatabaei A, Larijani K (2016) Evaluation of antioxidant enzymes activity in Turnip (Brassica rapa L.) under salt stress. Int Res J Basic Appl Sci 10(2):132–134

    Google Scholar 

  5. Kristal AR, Lampe JW (2002) Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr Cancer 42(1):1–9

    PubMed  Google Scholar 

  6. Munir M, Rashid H, Rauf M, Chaudhry Z, Bukhari MS (2008) Callus formation and plantlets regeneration from hypocotyl of Brassica napus by using different media combinations. Pak J Bot 40:309–315

    CAS  Google Scholar 

  7. Haytowitz DB, Pehrsson PR, Holden JM (2008) The national food and nutrient analysis program: a decade of progress. J Food Compos Anal 21:S94–S102

    Google Scholar 

  8. Dietert MF, Barron SA, Yoder OC (1982) Effects of genotype on in vitro culture in the genus Brassica. Plant Sci Lett 26(2/3):233–240

    Google Scholar 

  9. Murata M, Orton TJ (1987) Callus initiation and regeneration capacities in Brassica species. Plant Cell Tiss Org 11(2):111–123

    Google Scholar 

  10. Ravanfar S, Aziz M, Kadir M, Rashid A, Sirchi M (2009) Plant regeneration of (Brassica oleracea subsp. italica) Broccoli CV Green Marvel as affected by plant growth regulators. Afr J Biotechnol 8 (11):2523–2528

    CAS  Google Scholar 

  11. Baskar V, Gangadhar BH, Park SW, Nile SH (2016) A simple and efficient Agrobacterium tumefaciens-mediated plant transformation of (Brassica rapa ssp.) pekinensis. 3 Biotech 6(1):88

    PubMed  PubMed Central  Google Scholar 

  12. Murthy B, Murch S, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. Vitro Cell Dev Plant 34(4):267

    CAS  Google Scholar 

  13. Chen LP, Zhang MF, Xiao QB, Wu JG, Hirata Y (2004) Plant regeneration from hypocotyl protoplasts of red cabbage (Brassica oleracea) by using nurse cultures. Plant Cell Tissue Organ Cult 77(2):133–138

    CAS  Google Scholar 

  14. Memon SA, Hou X, Zhu B, Wolukau JN (2009) High-frequency adventitious shoots regeneration from leaf of non-heading Chinese cabbage (Brassica campestris ssp. chinensis) cultured in vitro. Acta Physiol Plant 31(6):1191

    CAS  Google Scholar 

  15. Aḥmad Sq (1996) In vitro callus selection in Brassica species. Ph.D. Thesis, Institute of Ecology and Resource Management, University of Edinburgh, UK

  16. Kumar V, Parvatam G, Ravishankar GA (2009) AgNO3: a potential regulator of ethylene activity and plant growth modulator. Electron J Biotechnol 12(2):8–9

    Google Scholar 

  17. Cogbill S, Faulcon T, Jones G, McDaniel M, Harmon G, Blackmon R, Young M (2010) Adventitious shoot regeneration from cotyledonary explants of rapid-cycling fast plants of (Brassica rapa L.). Plant Cell Tissue Organ Cult 101(2):127–133

    Google Scholar 

  18. Qin Y, Li HL, Guo YD (2007) High-frequency embryogenesis, regeneration of broccoli (Brassica oleracea var. italica) and analysis of genetic stability by RAPD. Sci Hortic 111(3):203–208

    CAS  Google Scholar 

  19. Maheshwari P, Selvaraj G, Kovalchuk I (2011) Optimization of (Brassica napus) (canola) explant regeneration for genetic transformation. New Biotechnol 29(1):144–155

    CAS  Google Scholar 

  20. Zechmann B (2011) Subcellular distribution of ascorbate in plants. Plant Signal Beha V 6(3):360–363

    CAS  Google Scholar 

  21. Gallie DR (2013) L-ascorbic acid: a multifunctional molecule supporting plant growth and development. Scientifica 1:1–24

    Google Scholar 

  22. Gallie DR (2012) The role of L-ascorbic acid recycling in responding to environmental stress and in promoting plant growth. J Exp Bot 64(2):433–443

    PubMed  Google Scholar 

  23. Proietti S, Moscatello S, Famiani F, Battistelli A (2009) Increase of ascorbic acid content and nutritional quality in spinach leaves during physiological acclimation to low temperature. Plant Physiol Biochem 47(8):717–723

    CAS  PubMed  Google Scholar 

  24. Titov S, Bhowmik SK, Mandal A, Alam MS, Uddin SN (2006) Control of phenolic compound secretion and effect of growth regulators for organ formation from (Musa spp). Cv. Kanthali floral bud explants. Am J Biochem Biotechnol 2(3):97–104

    CAS  Google Scholar 

  25. Kaviani B (2014) Effect of ascorbic acid concentration on structural characteristics of appical meristems on in vitro (Aloe barbadensis Mill). Acta Sci Pol Technol Aliment 13:49–56

    Google Scholar 

  26. Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (2008) Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem 283(43):28842–28851

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49(1):249–279

    CAS  Google Scholar 

  28. Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138(3):1673–1689

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225(5):1255–1264

    CAS  PubMed  Google Scholar 

  30. Akram NA, Shafiq F, Ashraf M (2017) Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci 8:613

    PubMed  PubMed Central  Google Scholar 

  31. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15(3):473–497

    CAS  Google Scholar 

  32. Cimino C, Vairo Cavalli S, Spina F, Natalucci C, Priolo N (2006) Callus culture for biomass production of milk thistle as a potential source of milk clotting peptidases. Electron J Biotechnol 9(3):237–240

  33. Melino V, Soole K, Ford C (2009) A method for determination of fruit-derived ascorbic, tartaric, oxalic and malic acids, and its application to the study of ascorbic acid catabolism in grapevines. J Grape Wine Res 15(3):293–302

    CAS  Google Scholar 

  34. Ren J, Chen Z, Duan W, Song X, Liu T, Wang J, Hou X, Li Y (2013) Comparison of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars. Plant Physiol Biochem 73:229–236

    CAS  PubMed  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  Google Scholar 

  36. Kakar KU, Nawazz Z, Abbasi BH, Ali M (2014) Thidiazuron induced plant regeneration in (Brassica rapa var.) Turnip via seed derived calli induction and radical scavenging activity. SJA 30(2):233–240

    Google Scholar 

  37. Khan MMA, Hassan L, Ahmad SD, Shah AH, Batool F (2009) In vitro regeneration potentiality of oil seed Brassica genotypes with differential BAP concentration. Pak J Bot 41(3):1233–1239

    CAS  Google Scholar 

  38. Pushpa K, Chowdhary J, Jain R (2002) Assessment of somaclonal variation in three tetraploid species of Brassica. Natl J Plant Improv 4(2):30–34

    Google Scholar 

  39. Lone JA (2017) Efficient callus induction and regeneration in (Brassica juncea) for environment friendly agriculture. Int J Pure Appl Biosci 5(1):135–141

    Article  Google Scholar 

  40. Zhang Y, Bhalla PL (2004) In vitro shoot regeneration from commercial cultivars of Australian canola (Brassica napus L.). Aust J Agric Res 55(7):753–756

    CAS  Google Scholar 

  41. Cardoza V, Stewart CN (2004) Brassica biotechnology: progress in cellular and molecular biology. Vitro Cell Dev Biol Plant 40(6):542–551

    CAS  Google Scholar 

  42. Biesaga-Kościelniak J, Kościelniak J, Janeczko A (2010) The impact of zearalenone and thidiazuron on indirect plant regeneration of oilseed rape and wheat. Acta Physiol Plant 32(6):1047–1053

    Google Scholar 

  43. Torrey JG (1957) Auxin control of vascular pattern formation in regenerating pea root meristems grown in vitro. Am J Bot 44(10): 859–870

  44. Haque M, Siddique AB, Islam SS (2015) Effect of silver nitrate and amino acids on high frequency plants regeneration in barley (Hordeum vulgare L.). Plant Tissue Cult Biotechnol 25(1):37–50

    Google Scholar 

  45. Mok MC, Martin RC, Mok DW (2000) Cytokinins: biosynthesis metabolism and perception. Vitro Cell Dev Plant 36(2):102–107

    CAS  Google Scholar 

  46. El-Ashry A, Gabr AMM, Bekheet S (2017) Zeatin and thidiazuron induced embryogenic calli from in vitro leaf and stem of Jojoba (Simmondsia chinensis). Pak J Biol Sci PJBS 20(7):355–364

    PubMed  Google Scholar 

  47. Ali M, Abbasi BH (2014) Thidiazuron-induced changes in biomass parameters, total phenolic content, and antioxidant activity in callus cultures of (Artemisia absinthium L.). Appl Biochem Biotechnol 172(5):2363–2376

    CAS  PubMed  Google Scholar 

  48. Scravoni J, Vasconcellos M, Valmorbida J, Ferri A, Marques M, Ono E, Rodrigues J (2006) Rendimento e composição química do óleo essencial de (Mentha piperita) L. submetida a aplicações de giberelina e citocinina. Rev Bras Plant Med 8(4):40–43

    Google Scholar 

  49. Arrigoni O, De Tullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta BBA 1569(1–3):1–9

    CAS  PubMed  Google Scholar 

  50. Li M, Ma F, Shang P, Zhang M, Hou C, Liang D (2009) Influence of light on ascorbate formation and metabolism in apple fruits. Planta 230(1):39–51

    CAS  PubMed  Google Scholar 

  51. Tamaoki M, Mukai F, Asai N, Nakajima N, Kubo A, Aono M, Saji H (2003) Light-controlled expression of a gene encoding L-galactono-γ-lactone dehydrogenase which affects ascorbate pool size in (Arabidopsis thaliana). Plant Sci 164(6):1111–1117

    CAS  Google Scholar 

  52. Aloni R, Baum SF, Peterson CA (1990) The role of cytokinin in sieve tube regeneration and callose production in wounded Coleus internodes. Plant Physiol 93(3):982–989

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program (2018YFD1000800), the National Natural Science Foundation of China (31872106), and National vegetable industry technology system (CARS-23-A-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamal, O.M., Shah, S.H.A., Li, Y. et al. Production of ascorbic acid, total protein, callus and root in vitro of non-heading Chinese cabbage by tissue culture. Mol Biol Rep 47, 6887–6897 (2020). https://doi.org/10.1007/s11033-020-05745-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05745-4

Keywords

Navigation