Skip to main content

Advertisement

Log in

Advances of exosome isolation techniques in lung cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Lung cancer (LC) is among the leading causes of death all over the world and it is often diagnosed at advanced or metastatic stages. Exosomes, derived from circulating vesicles that are released from the multivesicular body, can be utilized for diagnosis and also the prognosis of LC at early stages. Exosomal proteins, RNAs, and DNAs can help to better discern the prognostic and diagnostic features of LC. To our knowledge, there are various reviews on LC and the contribution of exosomes, but none of them are about the exome techniques and also their efficiency in LC. To fill this gap, in this review, we summarize the recent investigations regarding isolation and also the characterization of exosomes of LC cells. Furthermore, we discuss the noncoding RNAs as biomarkers and their applications in the diagnosis and prognosis of LC. Finally, we compare the efficacy of exosome isolation methods to better fi + 6 + guring out feasible techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Villalobos P, Wistuba II (2017) Lung cancer biomarkers. Hematol Oncol Clin N Am 31(1):13–29. https://doi.org/10.1016/j.hoc.2016.08.006

    Article  Google Scholar 

  2. Cagle PT, Allen TC, Olsen RJ (2013) Lung cancer biomarkers: present status and future developments. Arch Pathol Lab Med 137:1191–1198. https://doi.org/10.5858/arpa.2013-0319-CR

    Article  CAS  PubMed  Google Scholar 

  3. Vanni I, Alama A, Grossi F, Dal Bello MG, Coco S (2017) Exosomes: a new horizon in lung cancer. Drug Discov Today 22:927–936. https://doi.org/10.1016/j.drudis.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  4. Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750. https://doi.org/10.1080/20013078.2018.1535750

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tschuschke M, Kocherova I, Bryja A, Mozdziak P, Angelova Volponi A, Janowicz K, Sibiak R, Piotrowska-Kempisty H, Izycki D, Bukowska D, Antosik P, Shibli JA, Dyszkiewicz-Konwinska M, Kempisty B (2020) Inclusion biogenesis, methods of isolation and clinical application of human cellular exosomes. J Clin Med 9:2–6. https://doi.org/10.3390/jcm9020436

    Article  CAS  Google Scholar 

  6. Bæk R, Søndergaard EK, Varming K, Jørgensen MM (2016) The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray. J Immunol Methods 438:11–20. https://doi.org/10.1016/j.jim.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  7. Stahl PD, Raposo G (2019) Extracellular vesicles: exosomes and microvesicles, integrators of homeostasis. Physiology 34:169–177. https://doi.org/10.1152/physiol.00045.2018

    Article  CAS  PubMed  Google Scholar 

  8. Verweij FJ, Bebelman MP, Jimenez CR, Garcia-Vallejo JJ, Janssen H, Neefjes J, Knol JC, de Goeij-de Haas R, Piersma SR, Baglio SR (2018) Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling. J Cell Biol 217:1129–1142. https://doi.org/10.1083/jcb.201703206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Javidi MA, Ahmadi AH, Bakhshinejad B, Nouraee N, Babashah S, Sadeghizadeh M (2014) Cell-free microRNAs as cancer biomarkers: the odyssey of miRNAs through body fluids. Med Oncol 31(12):295. https://doi.org/10.1007/s12032-014-0295-y

    Article  CAS  PubMed  Google Scholar 

  10. Motavaf M, Pakravan K, Babashah S, Malekvandfard F, Masoumi M, Sadeghizadeh M (2016) Therapeutic application of mesenchymal stem cell-derived exosomes: a promising cell-free therapeutic strategy in regenerative medicine. Cell Mol Biol (Noisy-le-grand) 62:74–79

    Article  CAS  Google Scholar 

  11. Pan B-T, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978. https://doi.org/10.1016/0092-8674(83)90040-5

    Article  CAS  PubMed  Google Scholar 

  12. Li P, Kaslan M, Lee SH, Yao J, Gao Z (2017) Progress in exosome isolation techniques. Theranostics 7:789. https://doi.org/10.7150/thno.18133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li W, Mu D, Tian F, Hu Y, Jiang T, Han Y, Chen J, Han G, Li X (2013) Exosomes derived from Rab27aoverexpressing tumor cells elicit efficient induction of antitumor immunity. Mol Med Rep 8:1876–1882. https://doi.org/10.3892/mmr.2013.1738

    Article  CAS  PubMed  Google Scholar 

  14. Van Balkom BW, De Jong OG, Smits M, Brummelman J, den Ouden K, de Bree PM, van Eijndhoven MA, Pegtel DM, Stoorvogel W, Würdinger T (2013) Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood 121:3997–4006. https://doi.org/10.1182/blood-2013-02-478925

    Article  CAS  PubMed  Google Scholar 

  15. Kibria G, Ramos EK, Wan Y, Gius DR, Liu H (2018) Exosomes as a drug delivery system in cancer therapy: potential and challenges. Mol Pharm 15:3625–3633. https://doi.org/10.1021/acs.molpharmaceut.8b00277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Srivastava A, Amreddy N, Razaq M, Towner R, Zhao YD, Ahmed RA, Munshi A, Ramesh R (2018) Exosomes as theranostics for lung cancer. Adv Cancer Res 139:1–33. https://doi.org/10.1016/bs.acr.2018.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mastoridis S, Bertolino GM, Whitehouse G, Dazzi F, Sanchez Fueyo A, Martinez-Llordella M (2018) Multiparametric analysis of circulating exosomes and other small extracellular vesicles by advanced imaging flow cytometry. Front Immunol 9:1583. https://doi.org/10.3389/fimmu.2018.01583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 113:E968–E977. https://doi.org/10.1073/pnas.1521230113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen R, Xu X, Qian Z, Zhang C, Niu Y, Wang Z, Sun J, Zhang X, Yu Y (2019) The biological functions and clinical applications of exosomes in lung cancer. Cell Mol Life Sci 76(23):4613–4633. https://doi.org/10.1007/s00018-019-03233-y

    Article  CAS  PubMed  Google Scholar 

  20. Sheridan C (2016) Exosome cancer diagnostic reaches market. Nat Biotechnol 34(4):359–360. https://doi.org/10.1038/nbt0416-359

    Article  CAS  PubMed  Google Scholar 

  21. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell derived exosomes. Nat Med 4(5):594. https://doi.org/10.1038/nm0598-594

    Article  CAS  PubMed  Google Scholar 

  22. Tang Y, Cui Y, Li Z, Jiao Z, Zhang Y, He Y, Chen G, Zhou Q, Wang W, Zhou X (2016) Radiation-induced miR-208a increases the proliferation and radioresistance by targeting p21 in human lung cancer cells. J Exp Clin Cancer Res 35(1):7. https://doi.org/10.1186/s13046-016-0285-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou L, Lv T, Zhang Q, Zhu Q, Zhan P, Zhu S, Zhang J, Song Y (2017) The biology, function and clinical implications of exosomes in lung cancer. Cancer Lett 407(1):84–92. https://doi.org/10.1016/j.canlet.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  24. Reclusa P, Taverna S, Pucci M, Durendez E, Calabuig S, Manca P, Serrano MJ, Sober L, Pauwels P, Russo A (2017) Exosomes as diagnostic and predictive biomarkers in lung cancer. J Thorac Dis 9(Suppl 13):S1373. https://doi.org/10.21037/jtd.2017.10.67

    Article  PubMed  PubMed Central  Google Scholar 

  25. Niu L, Song X, Wang N, Xue L, Song X, Xie L (2019) Tumor-derived exosomal proteins as diagnostic biomarkers in non‐small cell lung cancer. Cancer Sci 110(1):433. https://doi.org/10.1111/cas.13862

    Article  CAS  PubMed  Google Scholar 

  26. Huang S-h, Li Y, Zhang J, Rong J, Ye S (2013) Epidermal growth factor receptor-containing exosomes induce tumor-specific regulatory T cells. Cancer Invest 31(5):330–335. https://doi.org/10.3109/07357907.2013.789905

    Article  CAS  PubMed  Google Scholar 

  27. Sun Y, Huo C, Qiao Z, Shang Z, Uzzaman A, Liu S, Jiang X, Fan L-Y, Ji L, Guan X (2018) Comparative proteomic analysis of exosomes and microvesicles in human saliva for lung cancer. J Proteome Res 17(3):1101–1107. https://doi.org/10.1021/acs.jproteome.7b00770

    Article  CAS  PubMed  Google Scholar 

  28. Pols MS, Klumperman J (2009) Trafficking and function of the tetraspanin CD63. Exp Cell Res 315(9):1584–1592. https://doi.org/10.1016/j.yexcr.2008.09.020

    Article  CAS  PubMed  Google Scholar 

  29. Tkach M, Kowal J, Théry C (2017) Why the need and how to approach the functional diversity of extracellular vesicles. Philos Trans R Soc Lond B Biol Sci 373(1737):20160479. https://doi.org/10.1098/rstb.2016.0479

    Article  CAS  PubMed Central  Google Scholar 

  30. Andreu Z, Yáñez-Mó M (2014) Tetraspanins in extracellular vesicle formation and function. Front Immunol 5(3):442. https://doi.org/10.3389/fimmu.2014.00442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Behbahani GD, Ghahhari NM, Javidi MA, Molan AF, Feizi N, Babashah S (2017) MicroRNA-mediated post-transcriptional regulation of epithelial to mesenchymal transition in cancer. Pathol Oncol Res 23:1–12. https://doi.org/10.1007/s12253-016-0101-6

    Article  CAS  PubMed  Google Scholar 

  32. Masoumi-Dehghi S, Babashah S, Sadeghizadeh M (2020) microRNA-141-3p-containing small extracellular vesicles derived from epithelial ovarian cancer cells promote endothelial cell angiogenesis through activating the JAK/STAT3 and NF-kappaB signaling pathways. J Cell Commun Signal 14(2):233–244. https://doi.org/10.1007/s12079-020-00548-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ingenito F, Roscigno G, Affinito A, Nuzzo S, Scognamiglio I, Quintavalle C, Condorelli G (2019) The role of exo-miRNAs in cancer: a focus on therapeutic and diagnostic applications. Int J Mol Sci 20(19):1–8. https://doi.org/10.3390/ijms20194687

    Article  CAS  Google Scholar 

  34. Wu Y, Deng W, Klinke IIDJ (2015) Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 140(19):6631–6642. https://doi.org/10.1039/c5an00688k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo GJ (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 109(31):E2110–E2116. https://doi.org/10.1073/pnas.1209414109

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560(7718):382–386. https://doi.org/10.1038/s41586-018-0392-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taverna S, Pucci M, Giallombardo M, Di Bella MA, Santarpia M, Reclusa P, Gil-Bazo I, Rolfo C, Alessandro R (2017) Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through the activation of EGFR pathway. Sci Rep 7(1):1–14. https://doi.org/10.1038/s41598-017-03460-y

    Article  CAS  Google Scholar 

  38. Xu Z-H, Miao Z-W, Jiang Q-Z, Gan D-X, Wei X-G, Xue X-Z, Li J-Q, Zheng F, Qin X-X, Fang W-G (2019) Brain microvascular endothelial cell exosome-mediated S100A16 up-regulation confers small-cell lung cancer cell survival in brain. FASEB J 33(2):1742–1757. https://doi.org/10.1096/fj.201800428R

    Article  CAS  PubMed  Google Scholar 

  39. Jakobsen KR, Paulsen BS, Bæk R, Varming K, Sorensen BS, Jørgensen MM (2015) Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles 4(1):26659. https://doi.org/10.3402/jev.v4.26659

    Article  CAS  PubMed  Google Scholar 

  40. Clark DJ, Fondrie WE, Yang A, Mao L (2016) Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes. J Proteomics 133:161–169. https://doi.org/10.1016/j.jprot.2015.12.023

    Article  CAS  PubMed  Google Scholar 

  41. Yamashita T, Kamada H, Kanasaki S, Maeda Y, Nagano K, Abe Y, Inoue M, Yoshioka Y, Tsutsumi Y, Katayama S (2013) Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis. Pharmazie 68(12):969–973

    CAS  PubMed  Google Scholar 

  42. Lin J, Li J, Huang B, Liu J, Chen X, Chen X-M, Xu Y-M, Huang L-F, Wang X-Z (2015) Exosomes: novel biomarkers for clinical diagnosis. Sci World J 2015:657086. https://doi.org/10.1155/2015/657086

    Article  CAS  Google Scholar 

  43. Campoy I, Lanau L, Altadill T, Sequeiros T, Cabrera S, Cubo-Abert M, Pérez-Benavente A, Garcia A, Borrós S, Santamaria A (2016) Exosome-like vesicles in uterine aspirates: a comparison of ultracentrifugation-based isolation protocols. J Transl Med 14(1):180. https://doi.org/10.1186/s12967-016-0935-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Anderson NG (1966) An introduction to particle separations in zonal centrifuges. Natl Cancer Inst Monogr 21:9–39

    CAS  PubMed  Google Scholar 

  45. Kalani A, Kamat P, Chaturvedi P, Tyagi S, Tyagi N (2014) Curcumin-primed exosomes mitigate endothelial cell dysfunction during hyperhomocysteinemia. Life Sci 107(1–2):1–7. https://doi.org/10.1016/j.lfs.2014.04.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107(2):102–108. https://doi.org/10.1016/j.imlet.2006.09.005

    Article  CAS  PubMed  Google Scholar 

  47. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73(10):1907–1920. https://doi.org/10.1016/j.jprot.2010.06.006

    Article  CAS  PubMed  Google Scholar 

  48. Laulagnier K, Motta C, Hamdi S, Sébastien R, Fauvelle F, Pageaux J-F, Kobayashi T, Salles J-P, Perret B, Bonnerot C (2004) Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 380(1):161–171. https://doi.org/10.1042/BJ20031594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Diaz G, Bridges C, Lucas M, Cheng Y, Schorey JS, Dobos KM, Kruh-Garcia NA (2018) Protein digestion, ultrafiltration, and size exclusion chromatography to optimize the isolation of exosomes from human blood plasma and serum. J Vis Exp 134:e57467. https://doi.org/10.3791/57467

    Article  CAS  Google Scholar 

  50. Bu H, He D, He X, Wang K (2019) Exosomes: isolation, analysis, and applications in cancer detection and therapy. Chembiochem 20:451–461. https://doi.org/10.1002/cbic.201800470

    Article  CAS  PubMed  Google Scholar 

  51. Heinemann ML, Vykoukal J (2017) Sequential filtration: a gentle method for the isolation of functional extracellular vesicles. Methods Mol Biol 1:33–41. https://doi.org/10.1007/978-1-4939-7253-1_4

    Article  CAS  Google Scholar 

  52. Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3(1):9. https://doi.org/10.1186/1479-5876-3-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rabinowits G, Gerçel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46. https://doi.org/10.3816/CLC.2009.n.006

    Article  CAS  PubMed  Google Scholar 

  54. Fang S, Tian H, Li X, Jin D, Li X, Kong J, Yang C, Yang X, Lu Y, Luo Y (2017) Clinical application of a microfluidic chip for immunocapture and quantification of circulating exosomes to assist breast cancer diagnosis and molecular classification. PLoS ONE 12(4):e0175050. https://doi.org/10.1371/journal.pone.0175050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, Mark MT, Molina H, Martin AB, Bojmar L (2018) Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 20:332. https://doi.org/10.1038/s41556-018-0040-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim JY, Lim HB, Moon MH (2016) Online miniaturized asymmetrical flow field-flow fractionation and inductively coupled plasma mass spectrometry for metalloprotein analysis of plasma from patients with lung cancer. Anal Chem 88(20):10198–10205. https://doi.org/10.1021/acs.analchem.6b02775

    Article  CAS  PubMed  Google Scholar 

  57. Li C, Lv Y, Shao C, Chen C, Zhang T, Wei Y, Fan H, Lv T, Liu H, Song Y (2019) Tumor-derived exosomal lncRNA GAS5 as a biomarker for early‐stage non‐small‐cell lung cancer diagnosis. J Cell Physiol 234:20721–20727. https://doi.org/10.1002/jcp.28678

    Article  CAS  PubMed  Google Scholar 

  58. Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8:727. https://doi.org/10.3390/cells8070727

    Article  CAS  PubMed Central  Google Scholar 

  59. Musante L, Tataruch D, Gu D, Benito-Martin A, Calzaferri G, Aherne S, Holthofer H (2014) A simplified method to recover urinary vesicles for clinical applications, and sample banking. Sci Rep 4:7532. https://doi.org/10.1038/srep07532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief C, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172. https://doi.org/10.1084/jem.183.3.1161

    Article  CAS  PubMed  Google Scholar 

  61. Barrès C, Blanc L, Bette-Bobillo P, André S, Mamoun R, Gabius H-J, Vidal M (2010) Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 115(3):696–705. https://doi.org/10.1182/blood-2009-07-231449

    Article  CAS  PubMed  Google Scholar 

  62. Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C, Daugaard M, Guns E, Hoorfar M, Li IT (2019) Challenges and opportunities in exosome research—perspectives from biology, engineering, and cancer therapy. APL Bioeng 3:011503. https://doi.org/10.1063/1.5087122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Konoshenko MY, Lekchnov EA, Vlassov AV, Laktionov PP (2018) Isolation of extracellular vesicles: general methodologies and latest trends. BioMed Res Int 2018:8545347. https://doi.org/10.1155/2018/8545347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tang Y-T, Huang Y-Y, Zheng L, Qin S-H, Xu X-P, An T-X, Xu Y, Wu Y-S, Hu X-M, Ping B-H (2017) Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. Int J Mol Med 40:834–844. https://doi.org/10.3892/ijmm.2017.3080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, Simpson RJ (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9:197–208. https://doi.org/10.1074/mcp.M900152-MCP200

    Article  CAS  PubMed  Google Scholar 

  66. Popović M, de Marco A (2018) Canonical and selective approaches in exosome purification and their implications for diagnostic accuracy. Transl Cancer Res 7:S209–S225

    Article  Google Scholar 

  67. Srivastava A, Amreddy N, Babu A, Panneerselvam J, Mehta M, Muralidharan R, Chen A, Zhao YD, Razaq M, Riedinger N (2016) Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep 6:38541. https://doi.org/10.1038/srep38541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Juan Z, Xiaofei Z, Long Z, Fangfang Z, Maarten vD P, tD (2012) LRP8 mediates Wnt/β-catenin signaling and controls osteoblast differentiation. J Bone Miner Res 27:2065–2074. https://doi.org/10.1002/jbmr.1661

    Article  CAS  Google Scholar 

  69. Théry C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol 30:21–23. https://doi.org/10.1002/0471143030.cb0322s30

    Article  Google Scholar 

  70. Iliescu FS, Vrtačnik D, Neuzil P, Iliescu C (2019) Microfluidic technology for clinical applications of exosomes. Micromachines 10:392. https://doi.org/10.3390/mi10060392

    Article  PubMed Central  Google Scholar 

  71. Jia Y, Ni Z, Sun H, Wang C (2019) Microfluidic approaches toward the isolation and detection of exosome nanovesicles. IEEE Acc 7:45080–45098

    Article  Google Scholar 

  72. Zhang X, Sai B, Wang F, Wang L, Wang Y, Zheng L, Li G, Tang J, Xiang J (2019) Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer 18:40. https://doi.org/10.1186/s12943-019-0959-5

    Article  PubMed  PubMed Central  Google Scholar 

  73. He M, Crow J, Roth M, Zeng Y, Godwin AK (2014) Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab Chip 14:3773–3780. https://doi.org/10.1039/c4lc00662c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lim J, Choi M, Lee H, Kim Y-H, Han J-Y, Lee ES, Cho Y (2019) Direct isolation and characterization of circulating exosomes from biological samples using magnetic nanowires. J Nanobiotechnol 17:1. https://doi.org/10.1186/s12951-018-0433-3

    Article  Google Scholar 

  75. Kowal EJ, Ter-Ovanesyan D, Regev A, Church GM (2017) Extracellular vesicle isolation and analysis by western blotting. Methods Mol Biol 1660:143–15276. https://doi.org/10.1007/978-1-4939-7253-1_12

    Article  CAS  PubMed  Google Scholar 

  76. Li Y, Zhang Y, Qiu F, Qiu Z (2011) Proteomic identification of exosomal LRG1: a potential urinary biomarker for detecting NSCLC. Electrophoresis 32:1976–1983. https://doi.org/10.1002/elps.201000598

    Article  CAS  PubMed  Google Scholar 

  77. Fleisher TA, Oliveira JB (2019) Flow cytometry. In: Clinical immunology. Elsevier, Amsterdam, pp 1239–1251. e1231

  78. Suárez H, Gámez-Valero A, Reyes R, López-Martín S, Rodríguez MJ, Carrascosa JL, Cabañas C, Borràs FE, Yáñez-Mó M (2017) A bead-assisted flow cytometry method for the semi-quantitative analysis of extracellular vesicles. Sci Rep 7:11271. https://doi.org/10.1038/s41598-017-11249-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oliveira-Rodríguez M, López-Cobo S, Reyburn HT, Costa-García A, López-Martín S, Yáñez-Mó M et al (2016) Development of a rapid lateral flow immunoassay test for detection of exosomes previously enriched from cell culture medium and body fluids. J Extracell Vesicles 5(1):31803–318806

    Article  PubMed  Google Scholar 

  80. Rim K-T, Kim S-J (2016) Quantitative analysis of exosomes from murine lung cancer cells by flow cytometry. J Cancer Prev 21:194. https://doi.org/10.15430/JCP.2016.21.3.194

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fonseca PC, Nihei OK, Savino W, Spray DC, Alves LA (2006) Flow cytometry analysis of gap junction-mediated cell–cell communication: advantages and pitfalls. Cytometry A 69:487–493. https://doi.org/10.1002/cyto.a.20255

    Article  PubMed  Google Scholar 

  82. An T, Qin S, Xu Y, Tang Y, Huang Y, Situ B, Inal JM, Zheng L (2015) Exosomes serve as tumour markers for personalized diagnostics owing to their important role in cancer metastasis. J Extracell Vesicles 4:27522. https://doi.org/10.3402/jev.v4.27522

    Article  CAS  PubMed  Google Scholar 

  83. Wang Y, Zhang S, Bao H, Mu S, Zhang B, Ma H, Ma S (2018) MicroRNA-365 promotes lung carcinogenesis by downregulating the USP33/SLIT2/ROBO1 signalling pathway. Cancer Cell Int 18:64–64. https://doi.org/10.1186/s12935-018-0563-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Inamura K, Ishikawa Y (2016) MicroRNA in lung cancer: novel biomarkers and potential tools for treatment. J Clin Med 5:36. https://doi.org/10.3390/jcm5030036

    Article  CAS  PubMed Central  Google Scholar 

  85. Iorio MV, Croce CM (2009) MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27:5848. https://doi.org/10.1200/JCO.2009.24.0317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004. https://doi.org/10.1073/pnas.0307323101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dejima H, Iinuma H, Kanaoka R, Matsutani N, Kawamura M (2017) Exosomal microRNA in plasma as a noninvasive biomarker for the recurrence of nonsmall cell lung cancer. Oncol Lett 13(3):1256–1263. https://doi.org/10.3892/ol.2017.5569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18(10):997. https://doi.org/10.1038/cr.2008.282

    Article  CAS  PubMed  Google Scholar 

  89. Hu Z, Chen X, Zhao Y, Tian T, Jin G, Shu Y, Chen Y, Xu L, Zen K, Zhang C (2010) Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28:1721–1726. https://doi.org/10.1200/JCO.2009.24.9342

    Article  PubMed  Google Scholar 

  90. Ge Q, Zhou Y, Lu J, Bai Y, Xie X, Lu Z (2014) miRNA in plasma exosome is stable under different storage conditions. Molecules 19:1568–1575. https://doi.org/10.3390/molecules19021568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhang H, Li P, Ju H, Pesta M, Kulda V, Jin W, Cai M, Liu C, Wu H, Xu J (2014) Diagnostic and prognostic value of microRNA-21 in colorectal cancer: an original study and individual participant data meta-analysis. Cancer Epidemiol Biomarkers Prev 23:2783–2792. https://doi.org/10.1158/1055-9965.EPI-14-0598

    Article  CAS  PubMed  Google Scholar 

  92. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4:143–159. https://doi.org/10.1002/emmm.201100209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64:3753–3756. https://doi.org/10.1158/0008-5472.CAN-04-0637

    Article  CAS  PubMed  Google Scholar 

  94. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647. https://doi.org/10.1016/j.cell.2005.01.014

    Article  CAS  PubMed  Google Scholar 

  95. Inamura K, Togashi Y, Nomura K, Ninomiya H, Hiramatsu M, Satoh Y, Okumura S, Nakagawa K, Ishikawa Y (2007) let-7 microRNA expression is reduced in bronchioloalveolar carcinoma, a non-invasive carcinoma, and is not correlated with prognosis. Lung Cancer 58:392–396. https://doi.org/10.1016/j.lungcan.2007.07.013

    Article  PubMed  Google Scholar 

  96. Kumar MS, Erkeland SJ, Pester RE, Chen CY, Ebert MS, Sharp PA, Jacks T (2008) Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A 105:3903–3908. https://doi.org/10.1073/pnas.0712321105

    Article  PubMed  PubMed Central  Google Scholar 

  97. Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, Muller R-U, Straka E, Su L, Burki EA (2008) A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 68:8535–8540. https://doi.org/10.1158/0008-5472.CAN-08-2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Qi Y, Zha W, Zhang W (2019) Exosomal miR-660-5p promotes tumor growth and metastasis in non-small cell lung cancer. J BUON 24:599–607

    PubMed  Google Scholar 

  99. Liu Q, Yu Z, Yuan S, Xie W, Li C, Hu Z, Xiang Y, Wu N, Wu L, Bai L (2017) Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget 8:13048. https://doi.org/10.18632/oncotarget.14369

    Article  PubMed  Google Scholar 

  100. Grimolizzi F, Monaco F, Leoni F, Bracci M, Staffolani S, Bersaglieri C, Gaetani S, Valentino M, Amati M, Rubini C (2017) Exosomal miR-126 as a circulating biomarker in non-small-cell lung cancer regulating cancer progression. Sci Rep 7:15277

    Article  PubMed  PubMed Central  Google Scholar 

  101. Del Vescovo V, Grasso M, Barbareschi M, Denti MA (2014) MicroRNAs as lung cancer biomarkers. World J Clin Oncol 5:604. https://doi.org/10.5306/wjco.v5.i4.604

    Article  PubMed  PubMed Central  Google Scholar 

  102. He L, He X, Lim LP, De Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130. https://doi.org/10.1038/nature05939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bisio A, De Sanctis V, Del Vescovo V, Denti MA, Jegga AG, Inga A, Ciribilli Y (2013) Identification of new p53 target microRNAs by bioinformatics and functional analysis. BMC Cancer 13(1):552. https://doi.org/10.1186/1471-2407-13-552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Minna JD (1989) p53: a frequent target for genetic abnormalities in lung cancer. Science 246(4929):491–494. https://doi.org/10.1126/science.2554494

    Article  CAS  PubMed  Google Scholar 

  105. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069. https://doi.org/10.1038/nature07423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ribeiro J, Sousa H (2014) MicroRNAs as biomarkers of cervical cancer development: a literature review on miR-125b and miR-34a. Mol Biol Rep 41:1525–1531. https://doi.org/10.1007/s11033-013-2998-0

    Article  CAS  PubMed  Google Scholar 

  107. Jiang L, Huang Q, Chang J, Wang E, Qiu X (2011) MicroRNA HSA-miR-125a-5p induces apoptosis by activating p53 in lung cancer cells. Exp Lung Res 37:387–398. https://doi.org/10.3109/01902148.2010.492068

    Article  CAS  PubMed  Google Scholar 

  108. Giallombardo M, Jorge Chacartegui J, Reclusa P, Van Meerbeeck JP, Alessandro R, Peeters M, Pauwels P, Rolfo CD (2016) Follow up analysis by exosomal miRNAs in EGFR mutated non-small cell lung cancer (NSCLC) patients during osimertinib (AZD9291) treatment: a potential prognostic biomarker tool. J Clin Oncol 12:29–35. https://doi.org/10.1200/JCO.2016.34.15_suppl.e23035

    Article  Google Scholar 

  109. Garofalo M, Quintavalle C, Di Leva G, Zanca C, Romano G, Taccioli C, Liu C, Croce C, Condorelli G (2008) MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene 27:3845. https://doi.org/10.1038/onc.2008.6

    Article  CAS  PubMed  Google Scholar 

  110. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198. https://doi.org/10.1016/j.ccr.2006.01.025

    Article  CAS  PubMed  Google Scholar 

  111. Zhang H, Su Y, Xu F, Kong J, Yu H, Qian B (2013) Circulating microRNAs in relation to EGFR status and survival of lung adenocarcinoma in female non-smokers. PLoS ONE 8:e81408. https://doi.org/10.1371/journal.pone.0081408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zhang R, Xia Y, Wang Z, Zheng J, Chen Y, Li X, Wang Y, Ming H (2017) Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun 490:406–414. https://doi.org/10.1016/j.bbrc.2017.06.055

    Article  CAS  PubMed  Google Scholar 

  113. Watanabe M, Kawaguchi T, Isa S-i, Ando M, Tamiya A, Kubo A, Saka H, Takeo S, Adachi H, Tagawa T (2015) Ultra-sensitive detection of the pretreatment EGFR T790M mutation in non-small cell lung cancer patients with an EGFR-activating mutation using droplet digital PCR. Clin Cancer Res 21:3552–3560. https://doi.org/10.1158/1078-0432.CCR-14-2151

    Article  CAS  PubMed  Google Scholar 

  114. Takahashi K, Yan IK, Kim C, Kim J, Patel T (2014) Analysis of extracellular RNA by digital PCR. Front Oncol 4:129. https://doi.org/10.3389/fonc.2014.00129

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83:8604–8610. https://doi.org/10.1021/ac202028g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang C, Ding Q, Plant P, Basheer M, Yang C, Tawedrous E, Krizova A, Boulos C, Farag M, Cheng Y (2019) Droplet digital PCR improves urinary exosomal miRNA detection compared to real-time PCR. Clin Biochem 67:54–59. https://doi.org/10.1016/j.clinbiochem.2019.03.008

    Article  CAS  PubMed  Google Scholar 

  117. Yagi Y, Ohkubo T, Kawaji H, Machida A, Miyata H, Goda S, Roy S, Hayashizaki Y, Suzuki H, Yokota T (2017) Next-generation sequencing-based small RNA profiling of cerebrospinal fluid exosomes. Neurosci Lett 636:48–57. https://doi.org/10.1016/j.neulet.2016.10.042

    Article  CAS  PubMed  Google Scholar 

  118. Song Z, Cai Z, Yan J, Shao YW, Zhang Y (2019) Liquid biopsies using pleural effusion-derived exosomal DNA in advanced lung adenocarcinoma. Transl Lung Cancer Res 8:392. https://doi.org/10.21037/tlcr.2019.08.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jin X, Chen Y, Chen H, Fei S, Chen D, Cai X, Liu L, Lin B, Su H, Zhao L (2017) Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res 23:5311–5319. https://doi.org/10.1158/1078-0432.CCR-17-0577

    Article  CAS  PubMed  Google Scholar 

  120. Razmara E, Garshasbi M (2018) Whole-exome sequencing identifies R1279X of MYH6 gene to be associated with congenital heart disease. BMC Cardiovasc Disord 18:137. https://doi.org/10.1186/s12872-018-0867-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Razmara E, Bitarafan F, Esmaeilzadeh-Gharehdaghi E, Almadani N, Garshasbi M (2018) The first case of NSHL by direct impression on EYA1 gene and identification of one novel mutation in MYO7A in the Iranian families. Iran J Basic Med Sci 21(3):333. https://doi.org/10.22038/IJBMS.2018.26269.6441

    Article  PubMed  PubMed Central  Google Scholar 

  122. Ritterhouse LL (2019) Targeted RNA sequencing in non-small-cell lung cancer. J Mol Diagn 21:183–185. https://doi.org/10.1016/j.jmoldx.2019.01.001

    Article  CAS  PubMed  Google Scholar 

  123. Blidner RA, Haynes BC, Hyter S, Schmitt S, Pessetto ZY, Godwin AK, Su D, Hurban P, van Kempen LC, Aguirre ML (2019) Design, optimization, and multisite evaluation of a targeted next-generation sequencing assay system for chimeric RNAs from gene fusions and exon-skipping events in non-small cell lung cancer. J Mol Diagn 21:352–365. https://doi.org/10.1016/j.jmoldx.2018.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Li J, Yuan H, Xu H, Zhao H, Nanxiang X (2019) Hypoxic cancer-secreted exosomal miR-182-5p promotes glioblastoma angiogenesis by targeting kruppel-like factor 2 and 4. Mol Cancer Res. https://doi.org/10.1158/1541-7786.MCR-19-0725

    Article  PubMed  PubMed Central  Google Scholar 

  125. Davies KD, Le AT, Sheren J, Nijmeh H, Gowan K, Jones KL, Varella-Garcia M, Aisner DL, Doebele RC (2018) Comparison of molecular testing modalities for detection of ROS1 rearrangements in a cohort of positive patient samples. J Thorac Oncol 13:1474–1482. https://doi.org/10.1016/j.jtho.2018.05.041

    Article  PubMed  PubMed Central  Google Scholar 

  126. Rekker K, Saare M, Roost AM, Kubo A-L, Zarovni N, Chiesi A et al (2014) Comparison of serum exosome isolation methods for microRNA profiling. Clin Biochem 47(1–2):135–138. https://doi.org/10.1016/j.clinbiochem.2013.10.020

    Article  CAS  PubMed  Google Scholar 

  127. Hong CS, Muller L, Boyiadzis M, Whiteside TL (2014) Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia. PLoS ONE 9(8):e103310. https://doi.org/10.3389/fimmu.2014.00160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Abramowicz A, Marczak L, Wojakowska A, Zapotoczny S, Whiteside TL, Widlak P et al (2018) Harmonization of exosome isolation from culture supernatants for optimized proteomics analysis. PLoS ONE 13(10):e0205496. https://doi.org/10.1371/journal.pone.0205496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ludwig N, Whiteside TL, Reichert TE (2019) Challenges in exosome isolation and analysis in health and disease. Int J Mol Sci 20(19):4684. https://doi.org/10.1158/1541-7786.MCR-18-0358

    Article  CAS  PubMed Central  Google Scholar 

  130. Palviainen M, Saari H, Kärkkäinen O, Pekkinen J, Auriola S, Yliperttula M et al (2019) Metabolic signature of extracellular vesicles depends on the cell culture conditions. J Extracell Vesicles 8(1):1596669. https://doi.org/10.1080/20013078.2019.1596669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Patel DB, Gray KM, Santharam Y, Lamichhane TN, Stroka KM, Jay SM (2017) Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng Transl Med 2(2):170–179. https://doi.org/10.1002/btm2.10065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ludwig N, Razzo BM, Yerneni SS, Whiteside TL (2019) Optimization of cell culture conditions for exosome isolation using mini-size exclusion chromatography (mini-SEC). Exp Cell Res 378(2):149–157. https://doi.org/10.1016/j.yexcr.2019.03.014

    Article  CAS  PubMed  Google Scholar 

  133. Zhou X, Zhang W, Yao Q, Zhang H, Dong G, Zhang M et al (2017) Exosome production and its regulation of EGFR during wound healing in renal tubular cells. Am J Physiol Renal Physiol 312(6):F963–F970. https://doi.org/10.1152/ajprenal.00078.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dong C, Liu X, Wang H, Li J, Dai L, Li J et al (2019) Hypoxic non-small-cell lung cancer cell-derived exosomal miR-21 promotes resistance of normoxic cell to cisplatin. Onco Targets Ther 12:1947. https://doi.org/10.2147/OTT.S186922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mutschelknaus L, Azimzadeh O, Heider T, Winkler K, Vetter M, Kell R et al (2017) Radiation alters the cargo of exosomes released from squamous head and neck cancer cells to promote migration of recipient cells. Sci Rep 7(1):1–13. https://doi.org/10.1038/s41598-017-12403-6

    Article  CAS  Google Scholar 

  136. Wang C, Xu J, Yuan D, Bai Y, Pan Y, Zhang J et al (2020) Exosomes carrying ALDOA and ALDH3A1 from irradiated lung cancer cells enhance migration and invasion of recipients by accelerating glycolysis. Mol Cell Biochem 1:11–13. https://doi.org/10.1007/s11010-020-03729-3

    Article  CAS  Google Scholar 

  137. Park G, Son B, Kang J, Lee S, Jeon J, Kim J-H, Yi G-R, Youn H, Moon C, Nam SY (2019) LDR-induced miR-30a and miR-30b target the PAI-1 pathway to control adverse effects of NSCLC radiotherapy. Mol Ther 27:342–354. https://doi.org/10.1016/j.ymthe.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  138. McCann JV, Xiao L, Kim DJ, Khan OF, Kowalski PS, Anderson DG, Pecot CV, Azam SH, Parker JS, Tsai YS (2019) Endothelial miR-30c suppresses tumor growth via inhibition of TGF-β-induced Serpine1. J Clin Invest 129:1654–1670. https://doi.org/10.1172/JCI123106

    Article  PubMed  PubMed Central  Google Scholar 

  139. Jia Z, Zhang Y, Xu Q, Guo W, Guo A (2018) miR-126 suppresses epithelial-to-mesenchymal transition and metastasis by targeting PI3K/AKT/Snail signaling of lung cancer cells. Oncol Lett 15:7369–7375. https://doi.org/10.3892/ol.2018.8207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Liu B, Peng X-C, Zheng X-L, Wang J, Qin Y-W (2009) MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer 66:169–175. https://doi.org/10.1016/j.lungcan.2009.01.010

    Article  PubMed  Google Scholar 

  141. Sun Y, Bai Y, Zhang F, Wang Y, Guo Y, Guo L (2010) miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun 391:1483–1489. https://doi.org/10.1016/j.bbrc.2009.12.098

    Article  CAS  PubMed  Google Scholar 

  142. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ (2008) The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7:759–764. https://doi.org/10.4161/cc.7.6.5834

    Article  CAS  PubMed  Google Scholar 

  143. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123. https://doi.org/10.1016/j.cell.2007.10.054

    Article  CAS  PubMed  Google Scholar 

  144. Yin J, Hu W, Pan L, Fu W, Dai L, Jiang Z, Zhang F, Zhao J (2019) let7 and miR17 promote selfrenewal and drive gefitinib resistance in nonsmall cell lung cancer. Oncol Rep 42:495–508. https://doi.org/10.3892/or.2019.7197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lu Z, Liu M, Stribinskis V, Klinge C, Ramos K, Colburn N, Li Y (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27:4373. https://doi.org/10.1038/onc.2008.72

    Article  CAS  PubMed  Google Scholar 

  146. Chen H-Y, Lin Y-M, Chung H-C, Lang Y-D, Lin C-J, Huang J, Wang W-C, Lin F-M, Chen Z, Huang H-D (2012) miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res 72:3631–3641. https://doi.org/10.1158/0008-5472.CAN-12-0667

    Article  CAS  PubMed  Google Scholar 

  147. Ma L, Liu J, Shen J, Liu L, Wu J, Li W, Luo J, Chen Q, Qian C (2010) Expression of miR-122 mediated by adenoviral vector induces apoptosis and cell cycle arrest of cancer cells. Cancer Biol Ther 9:554–561. https://doi.org/10.4161/cbt.9.7.11267

    Article  CAS  PubMed  Google Scholar 

  148. Ma D, Jia H, Qin M, Dai W, Wang T, Liang E, Dong G, Wang Z, Zhang Z, Feng F (2015) MiR-122 induces radiosensitization in non-small cell lung cancer cell line. Int J Mol Sci 16:22137–22150. https://doi.org/10.3390/ijms160922137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wong QW, Ching AK, Chan AW, Choy K-W, To K-F, Lai PB, Wong N (2010) MiR-222 overexpression confers cell migratory advantages in hepatocellular carcinoma through enhancing AKT signaling. Clin Cancer Res 16:867–875. https://doi.org/10.1158/1078-0432.CCR-09-1840

    Article  CAS  PubMed  Google Scholar 

  150. Wang C, Wang X, Liang H, Wang T, Yan X, Cao M, Wang N, Zhang S, Zen K, Zhang C (2013) miR-203 inhibits cell proliferation and migration of lung cancer cells by targeting PKCα. PLoS ONE 8:e73985. https://doi.org/10.1371/journal.pone.0073985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wang N, Liang H, Zhou Y, Wang C, Zhang S, Pan Y, Wang Y, Yan X, Zhang J, Zhang C-Y (2014) miR-203 suppresses the proliferation and migration and promotes the apoptosis of lung cancer cells by targeting SRC. PLoS ONE 9:e105570. https://doi.org/10.1371/journal.pone.0105570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Zhang C-Z, Zhang J-X, Zhang A-L, Shi Z-D, Han L, Jia Z-F, Yang W-D, Wang G-X, Jiang T, You Y-P (2010) MiR-221 and miR-222 target PUMA to induce cell survival in glioblastoma. Mol Cancer 9:229. https://doi.org/10.1186/1476-4598-9-229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wu X, Liu T, Fang O, Leach L, Hu X, Luo Z (2014) miR-194 suppresses metastasis of non-small cell lung cancer through regulating expression of BMP1 and p27 kip1. Oncogene 33:1506–1509. https://doi.org/10.1038/onc.2013.108

    Article  CAS  PubMed  Google Scholar 

  154. Meng X, Li Z, Zhou S, Xiao S, Yu P (2019) miR-194 suppresses high glucose‐induced non‐small cell lung cancer cell progression by targeting NFAT5. Thorac Cancer 10:1051–1059. https://doi.org/10.1111/1759-7714.13038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zou J, Ma L, Li X, Xu F, Fei X, Liu Q, Bai Q, Dong Y (2019) Circulating microRNA array (miR-182, 200b and 205) for the early diagnosis and poor prognosis predictor of non-small cell lung cancer. Eur Rev Med Pharmacol 23:1108–1115. https://doi.org/10.26355/eurrev_201902_17001

    Article  Google Scholar 

  156. Wang Z, Chen R, Wang S, Zhong J, Wu M, Zhao J, Duan J, Zhuo M, An T, Wang Y (2014) Quantification and dynamic monitoring of EGFR T790M in plasma cell-free DNA by digital PCR for prognosis of EGFR-TKI treatment in advanced NSCLC. PLoS ONE 9(11):e110780. https://doi.org/10.1371/journal.pone.0110780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Linardou H, Dahabreh IJ, Bafaloukos D, Kosmidis P, Murray S (2009) Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nat Rev Clin Oncol 6(6):352. https://doi.org/10.1038/nrclinonc.2009.62

    Article  CAS  PubMed  Google Scholar 

  158. Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen L-AA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31(1):114–121. https://doi.org/10.1165/rcmb.2003-0238OC

    Article  CAS  PubMed  Google Scholar 

  159. Sandfeld-Paulsen B, Aggerholm-Pedersen N, Baek R, Jakobsen K, Meldgaard P, Folkersen B, Rasmussen T, Varming K, Jørgensen M, Sorensen B (2016) Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Oncol 10:1595–1602. https://doi.org/10.1016/j.molonc.2016.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Xu Y, Qin S, An T, Tang Y, Huang Y, Zheng L (2017) MiR-145 detection in urinary extracellular vesicles increase diagnostic efficiency of prostate cancer based on hydrostatic filtration dialysis method. Prostate 77:1167–1175. https://doi.org/10.1002/pros.23376

    Article  CAS  PubMed  Google Scholar 

  161. Guo S-C, Tao S-C, Dawn H (2018) Microfluidics-based on-a-chip systems for isolating and analysing extracellular vesicles. J Extracell Vesicles 7:1508271. https://doi.org/10.1080/20013078.2018.1508271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lim J, Choi M, Lee H, Han J-Y, Cho Y (2019) A novel multifunctional nanowire platform for highly efficient isolation and analysis of circulating tumor-specific markers. Front Chem 6:664. https://doi.org/10.3389/fchem.2018.00664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Muller L, Mitsuhashi M, Simms P, Gooding WE, Whiteside TL (2016) Tumor-derived exosomes regulate expression of immune function-related genes in human T cell subsets. Sci Rep 6:1–13. https://doi.org/10.1038/srep20254

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This article was made possible by the grant NPRP10-120-170-211 from Qatar national Research Fund (a part of Qatar Foundation).

Funding

This article was made possible by the NPRP10-0120-170211 as a grant which was funded by Qatar National Research Fund (a part of Qatar Foundation).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Elham O. Mahgoub, Sadegh Babashah, Ehsan Razmara, and Anwarul Hasan; methodology: Ke Cheng, Fahimeh-Sadat Norouzi, and Mojtaba Falahati; Formal analysis and investigation: Roudabeh Behzadi-Andouhjerdi and Maryam Montazeri; writing-original draft preparation: Ehsan Razmara; writing—review and editing: Yousif Haik, Sadegh Babashah, and Amirreza Bitaraf; funding acquisition: Anwarul Hasan.

Corresponding authors

Correspondence to Anwarul Hasan or Sadegh Babashah.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declared that they have no conflict of interest.

Informed consent

Not applicable.

Data availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahgoub, E.O., Razmara, E., Bitaraf, A. et al. Advances of exosome isolation techniques in lung cancer. Mol Biol Rep 47, 7229–7251 (2020). https://doi.org/10.1007/s11033-020-05715-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05715-w

Keywords

Navigation