Skip to main content

Advertisement

Log in

Advances in exogenous RNA delivery techniques for RNAi-mediated pest control

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Climate change imposes a great threat to world food security and encourages insect pest proliferation and spreading. Because of these challenges, identifying novel biotechnology pest management and its applications is inevitable. RNA interference (RNAi) is a gene regulatory process used for the maintenance and regulation of host defences against invading viruses. Nevertheless, it is widely used for the analysis of gene function. In recent years, the potential use of RNA interference (RNAi) as a tool for manipulating crop traits, as well as an alternative for crop protection, has undergone outstanding developments. In this review, we describe some genes involved in insect dsRNA uptake and discuss the reasons for varying RNAi response in insect pests, emphasizing the presence of nucleases and double-stranded RNA binding protein. We explore recent breakthroughs in innovative dsRNA delivery for efficient and effective knockdown in insect pests. Conclusively, topical delivery of dsRNA combined with a nanoparticle complex holds great potential for RNAi-mediated pest control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2 

Similar content being viewed by others

References

  1. Mizuno T, Chu MY, Inouye M (1984) A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci USA 81:1966–1970

    Article  CAS  Google Scholar 

  2. Coleman J, Green JP, Inouye M (1984) The use of RNAs complementary to specific mRNAs to regulate the expression of individual bacterial genes. Cell 37:429436

    Article  Google Scholar 

  3. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  Google Scholar 

  4. Cogoni C, Irelan JT, Schumacher M et al (1996) Transgene silencing of al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interaction or DNA methylation. EMBO J 15:3153–3163

    Article  CAS  Google Scholar 

  5. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  Google Scholar 

  6. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139. https://doi.org/10.1038/nrm2632

    Article  CAS  PubMed  Google Scholar 

  7. Schwarz D, Hutvágner G, Du T et al (2003) Complex, asymmetry in the assembly of the RNAi enzyme. Cell 115:199–208

    Article  CAS  Google Scholar 

  8. Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239. https://doi.org/10.1146/annurev-biophys-083012-130404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741. https://doi.org/10.1038/nrm4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56:227–235. https://doi.org/10.1016/j.jinsphys.2009.10.00

    Article  CAS  PubMed  Google Scholar 

  11. Cooper AM, Silver K, Zhang J et al (2019) Molecular mechanisms influencing efficiency of RNA interference in insects. Pest Manag Sci 75:18–28. https://doi.org/10.1002/ps.5126

    Article  CAS  PubMed  Google Scholar 

  12. Shiu PK, Hunter CP (2017) Early developmental exposure to dsRNA is critical for initiating efficient nuclear RNAi in C. elegans. Cell Rep 18:2969–2978

    Article  CAS  Google Scholar 

  13. Wang E, Hunter CP (2017) SID-1 functions in multiple roles to support parental RNAi in Caenorhabditis elegans. Genetics. https://doi.org/10.1534/genetics.117.300067

    Article  PubMed  PubMed Central  Google Scholar 

  14. Whangbo JS, Weisman AS, Chae J, Hunter CP (2017) SID-1 domains important for dsRNA import in Caenorhabditis elegans. Genes Genom Genet 7:3887–3899. https://doi.org/10.1534/g3.117.300308

    Article  CAS  Google Scholar 

  15. McEwan DL, Weisman AS, Hunter CP (2012) Uptake of extracellular double-stranded RNA by SID-2. Mol Cell 47:746–754. https://doi.org/10.1016/j.molcel.2012.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jose AM, Kim YA, Leal-Ekman S, Hunter CP (2012) Conserved tyrosine kinase promotes the import of silencing RNA into Caenorhabditis elegans cells. Proc Natl Acad Sci 109:14520–14525. https://doi.org/10.1073/pnas.1201153109

    Article  PubMed  Google Scholar 

  17. Hinas A, Wright AJ, Hunter CP (2012) SID-5 is an endosome-associated protein required for efficient systemic RNAi in C. elegans. Curr Biol 22:1938–1943. https://doi.org/10.1016/j.cub.2012.08.020

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Holmgren BT, Hinas A (2017) The conserved SNARE SEC-22 localizes to late endosomes and negatively regulates RNA interference in Caenorhabditis elegans. RNA 23:297–307. https://doi.org/10.1261/rna.058438.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stalder L, Heusermann W, Sokol L et al (2013) The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing. EMBO J 32:1115–1127. https://doi.org/10.1038/emboj.2013.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miyata K, Ramaseshadri P, Zhang Y et al (2014) Establishing an in vivo assay system to identify components involved in environmental RNA interference in the western corn rootworm. PLoS ONE 9:e101661. https://doi.org/10.1371/journal.pone.0101661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cappelle K, De Oliveira CFR, Van Eynde B et al (2016) The involvement of clathrin-mediated endocytosis and two Sid-1-like transmembrane proteins in double-stranded RNA uptake in the Colorado potato beetle midgut. Insect Mol Biol 25:315–323. https://doi.org/10.1111/imb.12222

    Article  CAS  PubMed  Google Scholar 

  22. Li X, Dong X, Zou C, Zhang H (2015) Endocytic pathway mediates refractoriness of insect Bactrocera dorsalis to RNA interference. Sci Rep 5:8700. https://doi.org/10.1038/srep08700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pinheiro DH, Vélez AM, Fishilevich E et al (2018) Clathrin-dependent endocytosis is associated with RNAi response in the western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS ONE 13:e0201849. https://doi.org/10.1371/journal.pone.0201849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao D, Gao X, Xu J et al (2015) Clathrin-dependent endocytosis plays a predominant role in cellular uptake ofdouble-stranded RNA in the red flour beetle. Insect Biochem Mol Biol 60:68–77. https://doi.org/10.1016/j.ibmb.2015.03.009

    Article  CAS  PubMed  Google Scholar 

  25. Vélez AM, Fishilevich E (2018) The mysteries of insect RNAi: a focus on dsRNA uptake and transport. Pestic Biochem Physiol 151:25–31. https://doi.org/10.1016/j.pestbp.2018.08.005

    Article  CAS  PubMed  Google Scholar 

  26. Davis-Vogel C, Van Allen B, Van Hemert JL et al (2018) Identification and comparison of key RNA interference machinery from western corn rootworm, fall armyworm, and southern green stink bug. PLoS ONE 13:e0203160. https://doi.org/10.1371/journal.pone.0203160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang Y, Zhang H, Li H, Miao X (2011) Second-generation sequencing supply an effective way to screen RNAi targets in large scale for potential application in pest insect control. PLoS ONE 6:e18644

    Article  CAS  Google Scholar 

  28. Knorr E, Fishilevich E, Tenbusch L et al (2018) Gene silencing in Tribolium castaneum as a tool for the targeted identification of candidate RNAi targets in crop pests. Sci Rep 8:2061. https://doi.org/10.1038/s41598-018-20416-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Roberto AC, Herai RH, Santos LN et al (2015) De novo transcriptome assembly and analysis to identify potential gene targets for RNAi-mediated control of the tomato leafminer (Tuta absoluta). BMC Genom 16:635. https://doi.org/10.1186/s12864-015-1841-5

    Article  CAS  Google Scholar 

  30. Rodrigues TB, Duan JJ, Palli SR, Rieske LK (2018) Identification of highly effective target genes for RNAi-mediated control of emerald ash borer, Agrilus planipennis. Sci Rep 8:5020. https://doi.org/10.1038/s41598-018-23216-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Miller SC, Miyata K, Brown SJ, Tomoyasu Y (2012) Dissecting systemic RNA interference in the red flour beetle Tribolium castaneum: parameters affecting the efficiency of RNAi. PLoS ONE 7:e47431. https://doi.org/10.1371/journal.pone.0047431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bolognesi R, Ramaseshadri P, Anderson J et al (2012) Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS ONE 7:e47534. https://doi.org/10.1371/journal.pone.0047534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. He W, Xu W, Xu L et al (2020) Length-dependent accumulation of double-stranded RNAs in plastids affects RNA interference efficiency in the Colorado potato beetle. J Exp Bot. https://doi.org/10.1093/jxb/eraa001

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kolliopoulou A, Swevers L (2014) Recent progress in RNAi research in Lepidoptera: intracellular machinery, antiviral immune response and prospects for insect pest control. Curr Opin Insect Sci 6:28–34. https://doi.org/10.1016/j.cois.2014.09.019

    Article  Google Scholar 

  35. Singh IK, Singh S, Mogilicherla K et al (2017) Comparative analysis of double-stranded RNA degradation and processing in insects. Sci Rep 7:17059. https://doi.org/10.1038/s41598-017-17134-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Christiaens O, Swevers L, Smagghe G et al (2014) DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides 53:307–314. https://doi.org/10.1016/j.peptides.2013.12.014

    Article  CAS  PubMed  Google Scholar 

  37. Ghodke AB, Good RT, Golz JF et al (2019) Extracellular endonucleases in the midgut of Myzus persicae may limit the efficacy of orally delivered RNAi. Sci Rep 9:11898. https://doi.org/10.1038/s41598-019-47357-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Almeida Garcia R, Lima Pepino Macedo L, Cabral do Nascimento D et al (2017) Nucleases as a barrier to gene silencing in the cotton boll weevil, Anthonomus grandis. PLoS ONE 12:e0189600. https://doi.org/10.1371/journal.pone.0189600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wynant N, Verlinden H, Breugelmans B et al (2012) Tissue dependence and sensitivity of the systemic RNA interference response in the desert locust, Schistocerca gregaria. Insect Biochem Mol Biol 42:911–917. https://doi.org/10.1016/j.ibmb.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  40. Chang K-Y, Ramos A (2005) The double-stranded RNA-binding motif, a versatile macromolecular docking platform. FEBS J 272:2109–2117. https://doi.org/10.1111/j.1742-4658.2005.04652.x

    Article  CAS  PubMed  Google Scholar 

  41. LeGendre JB, Campbell ZT, Kroll-Conner P et al (2013) RNA targets and specificity of staufen, a double-stranded RNA-binding protein in Caenorhabditis elegans. J Biol Chem 288:2532–2545. https://doi.org/10.1074/jbc.M112.397349

    Article  CAS  PubMed  Google Scholar 

  42. Yoon J-S, Mogilicherla K, Gurusamy D et al (2018) Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. Proc Natl Acad Sci 115:8334–8339. https://doi.org/10.1073/pnas.1809381115

    Article  CAS  PubMed  Google Scholar 

  43. Lu D, Wu M, Pu J et al (2013) A functional study of two dsRNA binding protein genes in Laodelphax striatellus. Pest Manag Sci 69:1034–1039. https://doi.org/10.1002/ps.3553

    Article  CAS  PubMed  Google Scholar 

  44. Kumar P, Pandit SS, Baldwin IT (2012) Tobacco rattle virus vector: a rapid and transient means of silencing Manduca sexta genes by plant mediated RNA interference. PLoS ONE 7:e31347. https://doi.org/10.1371/journal.pone.0031347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Malik HJ, Raza A, Amin I et al (2016) RNAi-mediated mortality of the whitefly through transgenic expression of double-stranded RNA homologous to acetylcholinesterase and ecdysone receptor in tobacco plants. Sci Rep 6:38469. https://doi.org/10.1038/srep38469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khan AM, Ashfaq M, Kiss Z et al (2013) Use of recombinant tobacco mosaic virus to achieve RNA interference in plants against the citrus Mealybug, Planococcus citri (Hemiptera: Pseudococcidae). PLoS ONE 8:e73657. https://doi.org/10.1371/journal.pone.0073657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Arif MK, Muhammad A, Azhar AK et al (2015) Inoculation of Nicotiana tabacum with recombinant potato virus X induces RNA interference in the solenopsis mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Biotechnol Lett 37:2083–2090. https://doi.org/10.1007/s10529-015-1880-7

    Article  CAS  Google Scholar 

  48. Geng T, Cheng L, Qi X et al (2015) Transgenic cotton plants expressing double-stranded RNAs target HMG-CoA reductase (HMGR) gene inhibits the growth, development and survival of cotton bollworms. Int J Biol Sci 11:1296–1305. https://doi.org/10.7150/ijbs.12463

    Article  CAS  Google Scholar 

  49. Rong Y, Xu X, Liang Y et al (2014) The insect ecdysone receptor is a good potential target for RNAi-based pest control. Int J Biol Sci 10:1171–1180. https://doi.org/10.7150/ijbs.9598

    Article  CAS  Google Scholar 

  50. Feng L, Xiao-Dong W, Yi-Ying Z et al (2015) Silencing the HaAK gene by transgenic plant-mediated RNAi impairs larval growth of Helicoverpa armigera. Int J Biol Sci 11:67–74. https://doi.org/10.7150/ijbs.10468

    Article  CAS  Google Scholar 

  51. Head GP, Carroll MW, Evans SP et al (2017) Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management. Pest Manag Sci 73:1883–1899. https://doi.org/10.1002/ps.4554

    Article  CAS  PubMed  Google Scholar 

  52. Bally J, McIntyr GJ, Doran RL et al (2016) In-plant protection against Helicoverpa armigera by production of long hpRNA in chloroplasts. Front Plant Sci 7:1453

    Article  Google Scholar 

  53. Zhang J, Khan SA, Hasse C et al (2015) Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids. Science 347:991–994. https://doi.org/10.1126/science.1261680

    Article  CAS  PubMed  Google Scholar 

  54. Jin S, Singh ND, Li L et al (2015) Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation. Plant Biotechnol J 13:435–446. https://doi.org/10.1111/pbi.12355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Killiny N, Kishk A (2017) Delivery of dsRNA through topical feeding for RNA interference in the citrus sap piercing-sucking hemipteran, Diaphorina citri. Arch Insect Biochem Physiol 95:e21394. https://doi.org/10.1002/arch.21394

    Article  CAS  Google Scholar 

  56. Naqqash MN, Gökçe A, Aksoy E, Bakhsh A (2020) Downregulation of imidacloprid resistant genes alters the biological parameters in Colorado potato beetle, Leptinotarsa decemlineata Say (chrysomelidae: Coleoptera). Chemosphere 240:124857. https://doi.org/10.1016/j.chemosphere.2019.124857

    Article  CAS  PubMed  Google Scholar 

  57. Álvarez-Sánchez AR, Romo-Quinones C, Rosas-Quijano R et al (2018) Production of specific dsRNA against white spot syndrome virus in the yeast Yarrowia lipolytica. Aquac Res 49:480–491. https://doi.org/10.1111/are.13479

    Article  CAS  Google Scholar 

  58. Whitten MM, Facey PD, Del SR et al (2016) Symbiont-mediated RNA interference ininsects. Proc Biol Sci 283:20160042. https://doi.org/10.1098/rspb.2016.0042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Whitten M, Dyson P (2017) Gene silencing in non-model insects: overcoming hurdles using symbiotic bacteria for trauma-free sustainable delivery of RNA interference. BioEssays 39:1600247. https://doi.org/10.1002/bies.201600247

    Article  CAS  Google Scholar 

  60. Gogoi A, Sarmah N, Kaldis A et al (2017) Plant insects and mites uptake double-stranded RNA upon its exogenous application on tomato leaves. Planta 246:1233–1241. https://doi.org/10.1007/s00425-017-2776-7

    Article  CAS  PubMed  Google Scholar 

  61. Ghosh SKB, Hunter WB, Park AL, Gundersen-Rindal DE (2017) Double strand RNA delivery system for plant-sap-feeding insects. PLoS ONE 12:e0171861. https://doi.org/10.1371/journal.pone.0171861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hunter WB, Glick E, Paldi N, Bextine BR (2012) Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression. Southwest Entomol 37:85–87. https://doi.org/10.3958/059.037.0110

    Article  Google Scholar 

  63. Berger C, Laurent F (2019) Trunk injection of plant protection products to protect trees from pests and diseases. Crop Prot 124:104831. https://doi.org/10.1016/j.cropro.2019.05.025

    Article  Google Scholar 

  64. Ghosh SKB, Hunter WB, Park AL, Gundersen-Rindal DE (2018) Double-stranded RNA oral delivery methods to induce RNA interference in phloem and plant-sap-feeding Hemipteran Insects. J Vis Exp. https://doi.org/10.3791/57390

    Article  PubMed  PubMed Central  Google Scholar 

  65. Paris TM, Hunter W, Metz JL et al (2018) Antisense oligonucleotides, F-ASO Downregulates Wolbachia in Asian Citrus Psyllid. In: Plant and Animal Genome XXVI Conference January 13–17

  66. Sinisterra-Hunter X, Hunter WB (2018) Towards a holistic integrated pest management: lessons learned from plant-insect mechanisms in the field. The biology of plant-insect interactions: a compendium for the plant biotechnologist. CRC Press, Boca Raton, pp 204–226

    Chapter  Google Scholar 

  67. San Miguel K, Scott JG (2016) The next generation of insecticides: dsRNA is stable as a foliar-applied insecticide. Pest Manag Sci 72:801–809. https://doi.org/10.1002/ps.4056

    Article  CAS  PubMed  Google Scholar 

  68. Dalakouras A, Wassenegger M, Dadami E et al (2019) GMO-free RNAi: exogenous application of RNA molecules in plants. Plant Physiol. https://doi.org/10.1104/pp.19.00570

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cagliari D, Dias NP, Galdeano DM et al (2019) Management of pest insects and plant diseases by non-transformative RNAi. Front Plant Sci 10:1319. https://doi.org/10.3389/fpls.2019.01319

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mat Jalaluddin NS, Othman RY, Harikrishna JA (2019) Global trends in research and commercialization of exogenous and endogenous RNAi technologies for crops. Crit Rev Biotechnol 39:67–78. https://doi.org/10.1080/07388551.2018.1496064

    Article  PubMed  Google Scholar 

  71. Degors IMS, Wang C, Rehman ZU, Zuhorn IS (2019) Carriers break barriers in drug delivery: endocytosis and endosomal escape of gene delivery vectors. Acc Chem Res 52:1750–1760. https://doi.org/10.1021/acs.accounts.9b00177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yoon J-S, Gurusamy D, Palli SR (2017) Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda. Insect Biochem Mol Biol 90:53–60. https://doi.org/10.1016/j.ibmb.2017.09.011

    Article  CAS  PubMed  Google Scholar 

  73. Vermeulen LMP, Brans T, Samal SK et al (2018) Endosomal size and membrane leakiness influence proton sponge-based rupture of endosomal vesicles. ACS Nano 12:2332–2345. https://doi.org/10.1021/acsnano.7b07583

    Article  CAS  PubMed  Google Scholar 

  74. Demirer GS, Zhang H, Matos JL et al (2019) High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. Nat Nanotechnol. https://doi.org/10.1038/s41565-019-0382-5

    Article  PubMed  Google Scholar 

  75. Kravanja G, Primožič M, Knez Ž, Leitgeb M (2019) Chitosan-based (nano)materials for novel biomedical applications. Molecules 24:1960. https://doi.org/10.3390/molecules24101960

    Article  CAS  PubMed Central  Google Scholar 

  76. Bamburowicz-Klimkowska M, Poplawska M, Grudzinski IP (2019) Nanocomposites as biomolecules delivery agents in nanomedicine. J Nanobiotechnol 17:48. https://doi.org/10.1186/s12951-019-0479-x

    Article  Google Scholar 

  77. Natarajan P, Sukthankar P, Changstrom J et al (2018) Synthesis and characterization of multifunctional branched amphiphilic peptide bilayer conjugated gold nanoparticles. ACS Omega 3:11071–11083. https://doi.org/10.1021/acsomega.8b01633

    Article  CAS  Google Scholar 

  78. Avila LA, Aps LRMM, Sukthankar P et al (2015) Branched amphiphilic cationic oligopeptides form peptiplexes with DNA: a study of their biophysical properties and transfection efficiency. Mol Pharm 12:706–715. https://doi.org/10.1021/mp500524s

    Article  CAS  PubMed  Google Scholar 

  79. de Barros SM, Avila LA, Whitaker SK et al (2017) Branched amphipathic peptide capsules: different ratios of the two constituent peptides direct distinct bilayer structures, sizes, and DNA transfection efficiency. Langmuir 33:7096–7104. https://doi.org/10.1021/acs.langmuir.7b00912

    Article  CAS  PubMed  Google Scholar 

  80. Avila LA, Chandrasekar R, Wilkinson KE et al (2018) Delivery of lethal dsRNAs in insect diets by branched amphiphilic peptide capsules. J Control Release 273:139–146. https://doi.org/10.1016/j.jconrel.2018.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hunter WB, Gonzalez MT, Tomich J (2018) BAPC-assisted CRISPR/Cas9 system: targeted delivery into adult ovaries for heritable germline gene editing (Arthropoda: Hemiptera). Biorxiv. https://doi.org/10.1101/478743

    Article  Google Scholar 

  82. Serrano-Sevilla I, Artiga Á, Mitchell SG et al (2019) Natural polysaccharides for siRNA delivery: nanocarriers based on chitosan, hyaluronic acid, and their derivatives. Molecules 24:2570. https://doi.org/10.3390/molecules24142570

    Article  CAS  PubMed Central  Google Scholar 

  83. Hong CA, Nam YS (2014) Functional nanostructures for effective delivery of small interfering RNA therapeutics. Theranostics 4:1211–1232. https://doi.org/10.7150/thno.8491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Christiaens O, Tardajos MG, Martinez Reyna ZL et al (2018) Increased RNAi efficacy in Spodoptera exigua via the formulation of dsRNA with guanylated polymers. Front Physiol 9:316. https://doi.org/10.3389/fphys.2018.00316

    Article  PubMed  PubMed Central  Google Scholar 

  85. Thairu MW, Skidmore IH, Bansal R et al (2017) Efficacy of RNA interference knockdown using aerosolized short interfering RNAs bound to nanoparticles in three diverse aphid species. Insect Mol Biol 26:356–368. https://doi.org/10.1111/imb.12301

    Article  CAS  PubMed  Google Scholar 

  86. Dhandapani RK, Gurusamy D, Howell JL, Palli SR (2019) Development of CS-TPP-dsRNA nanoparticles to enhance RNAi efficiency in the yellow fever mosquito, Aedes aegypti. Sci Rep 9:8775. https://doi.org/10.1038/s41598-019-45019-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ni R, Feng R, Chau Y (2019) Synthetic approaches for nucleic acid delivery: choosing the right carriers. Life 9:59. https://doi.org/10.3390/life9030059

    Article  CAS  PubMed Central  Google Scholar 

  88. Zhang X, Zhang J, Zhu KY (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19:683–693. https://doi.org/10.1111/j.1365-2583.2010.01029.x

    Article  CAS  PubMed  Google Scholar 

  89. He B, Chu Y, Yin M et al (2013) Fluorescent nanoparticle delivered dsRNA toward genetic control of insect pests. Adv Mater 25:4580–4584. https://doi.org/10.1002/adma.201301201

    Article  CAS  PubMed  Google Scholar 

  90. Das S, Debnath N, Cui Y et al (2015) Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: a comparative analysis. ACS Appl Mater Interfaces 7:19530–19535. https://doi.org/10.1021/acsami.5b05232

    Article  CAS  PubMed  Google Scholar 

  91. Ramesh Kumar D, Saravana Kumar P, Gandhi MR et al (2016) Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Int J Biol Macromol 86:89–95. https://doi.org/10.1016/j.ijbiomac.2016.01.030

    Article  CAS  PubMed  Google Scholar 

  92. Lin Y-H, Huang J-H, Liu Y et al (2017) Oral delivery of dsRNA lipoplexes to German cockroach protects dsRNA from degradation and induces RNAi response. Pest Manag Sci 73:960–966. https://doi.org/10.1002/ps.4407

    Article  CAS  PubMed  Google Scholar 

  93. Zhang Y, Cui J, Zhou Y et al (2018) Liposome mediated double-stranded RNA delivery to silence ribosomal protein P0 in the tick Rhipicephalus haemaphysaloides. Ticks Tick Borne Dis 9:638–644. https://doi.org/10.1016/j.ttbdis.2018.01.015

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zheng Y, Hu Y, Yan S et al (2019) A polymer/detergent formulation improves dsRNA penetration through the body wall and RNAi-induced mortality in the soybean aphid Aphis glycines. Pest Manag Sci. https://doi.org/10.1002/ps.5313

    Article  PubMed  Google Scholar 

  95. Abdul Ghafoor Raja M, Katas H, Jing Wen T (2015) Stability, intracellular delivery, and release of siRNA from chitosan nanoparticles using different cross-linkers. PLoS ONE 10:e0128963. https://doi.org/10.1371/journal.pone.0128963

    Article  CAS  PubMed Central  Google Scholar 

  96. Parsons KH, Mondal MH, McCormick CL, Flynt AS (2018) Guanidinium-functionalized interpolyelectrolyte complexes enabling RNAi in resistant insect pests. Biomacromol 19:1111–1117. https://doi.org/10.1021/acs.biomac.7b01717

    Article  CAS  Google Scholar 

  97. Parker KM, Barragán Borrero V, van Leeuwen DM et al (2019) Environmental fate of RNA interference pesticides: adsorption and degradation of double-stranded RNA molecules in agricultural soils. Environ Sci Technol 53:3027–3036. https://doi.org/10.1021/acs.est.8b05576

    Article  CAS  PubMed  Google Scholar 

  98. Mezzetti B, Smagghe G, Arpaia S et al (2004) (2020) RNAi: what is its position in agriculture? J Pest Sci. https://doi.org/10.1007/s10340-020-01238-2

    Article  Google Scholar 

  99. Taning CN, Arpaia S, Christiaens O et al (2020) RNA-based biocontrol compounds: current status and perspectives to reach the market. Pest Manag Sci 76:841–845. https://doi.org/10.1002/ps.5686

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the World Academy of Sciences for TWAS Postgraduate Fellowship (FR number: 3240280431) and support from International Foundation for Science grant (No C/6194–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olawale Samuel Adeyinka.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeyinka, O.S., Riaz, S., Toufiq, N. et al. Advances in exogenous RNA delivery techniques for RNAi-mediated pest control. Mol Biol Rep 47, 6309–6319 (2020). https://doi.org/10.1007/s11033-020-05666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05666-2

Keywords

Navigation