Skip to main content

Advertisement

Log in

Salivary exosomes: properties, medical applications, and isolation methods

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Salivary exosomes are extracellular vesicles (EVs) with abundant CD63 immunoreactivity on their surface. Based on their size and protein composition, these exosomes can be categorized into two classes of exosomes I (mean diameter of 83.5 nm) and II (mean diameter of 40.5 nm). We have attempted to review the features of these exosomes, including origin, composition, separation methods, and their application in medicine. Not only the composition of salivary exosomes is invaluable in term of diagnosis, but can also afford an understanding in roles of the contents and components of these exosomes in the fundamental pathophysiologic processes of different diseases. since these EVs can cross the epithelial barriers they may be essential for transporting of multifarious components from the blood into saliva. Thus, in comparison to other bodily fluids, salivary exosomes are probably a better and accessible tool to examine the function of exosomes in the diagnosis and treatment of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are not publicly available due but are available from the corresponding author on reasonable request.

Abbreviations

EV:

Extracellular vesicle

EM:

Electron microscopy

MVB:

Multivesicular body

ESCRT:

Endosomal sorting complexes required to transport

ILV:

Intraluminal vesicle

ncRNA:

Non-coding RNA

mtDNA:

Mitochondrial DNA

ssDNA:

Single-strand DNA

RAB:

Ras associated binding protein

ARF:

ADP ribosylation factor

TSG101:

Tumor susceptibility gene 101

HSP70:

Heat shock protein

DRPLA:

Dentatorubro pallidoluysian atrophy

pIgR:

Polymeric Ig receptor

References

  1. Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow, and function. J Prosthet Dent 85(2):162–169

    CAS  PubMed  Google Scholar 

  2. Lan X, Chan JY, Pu JJ, Qiao W, Pang S, Yang W-f, Wong KC, Kwong DL, Su Y-x (2020) Saliva electrolyte analysis and xerostomia-related quality of life in nasopharyngeal carcinoma patients following intensity-modulated radiation therapy. Radiother Oncol

  3. Hildes J, Ferguson MH (1955) The concentration of electrolytes in normal human saliva. Can J Biochem Physiol 33(2):217–225

    CAS  PubMed  Google Scholar 

  4. Gardner A, Carpenter G, So P-W (2020) Salivary metabolomics: from diagnostic biomarker discovery to investigating biological function. Metabolites 10(2):47

    CAS  PubMed Central  Google Scholar 

  5. Meleti M, Cassi D, Vescovi P, Setti G, Pertinhez TA, Pezzi ME (2020) Salivary biomarkers for diagnosis of systemic diseases and malignant tumors. A systematic review. Medicina Oral Patología Oral y Cirugía Bucal 25(2):e299

    CAS  Google Scholar 

  6. Bel’skaya LV, Sarf EA, Kosenok VK (2020) Age and gender characteristics of the biochemical composition of saliva: correlations with the composition of blood plasma. J Oral Biol Craniofacial Res 10(2):59–65

    Google Scholar 

  7. Lau CS, Wong DT (2012) Breast cancer exosome-like microvesicles and salivary gland cells interplay alters salivary gland cell-derived exosome-like microvesicles in vitro. PLoS ONE 7(3):e33037

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang J, Wei F, Schafer C, Wong DT (2014) Detection of tumor cell-specific mRNA and protein in exosome-like microvesicles from blood and saliva. PLoS ONE 9(11):e110641

    PubMed  PubMed Central  Google Scholar 

  9. Chiappin S, Antonelli G, Gatti R, Elio F (2007) Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta 383(1–2):30–40

    CAS  PubMed  Google Scholar 

  10. Guo Q, Jiang C (2020) Delivery strategies for macromolecular drugs in cancer therapy. Acta Pharmaceut Sin B

  11. Zhou H, Xu W, Qian H, Yin Q, Zhu W, Yan Y (2008) Circulating RNA as a novel tumor marker: an in vitro study of the origins and characteristics of extracellular RNA. Cancer Lett 259(1):50–60

    CAS  PubMed  Google Scholar 

  12. Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75(2):193–208. https://doi.org/10.1007/s00018-017-2595-9

    Article  CAS  PubMed  Google Scholar 

  13. Harding C, Stahl P (1983) Transferrin recycling in reticulocytes: pH and iron are important determinants of ligand binding and processing. Biochem Biophys Res Commun 113(2):650–658

    CAS  PubMed  Google Scholar 

  14. Pan B-T, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33(3):967–978

    CAS  PubMed  Google Scholar 

  15. Johnstone RM (2005) Revisiting the road to the discovery of exosomes. Blood Cells Mol Dis 34(3):214–219

    CAS  PubMed  Google Scholar 

  16. Bodey B, Bodey B Jr, Kaiser H (1997) Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network. In vivo (Athens, Greece) 11(4):351

    CAS  Google Scholar 

  17. Skokos D, Le Panse S, Villa I, Rousselle J-C, Peronet R, Namane A, David B, Mécheri S (2001) Nonspecific B and T cell-stimulatory activity mediated by mast cellsis associated with exosomes. Int Arch Allergy Immunol 124(1–3):133–136

    CAS  PubMed  Google Scholar 

  18. Skokos D, Le Panse S, Villa I, Rousselle J-C, Peronet R, David B, Namane A, Mécheri S (2001) Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J Immunol 166(2):868–876

    CAS  PubMed  Google Scholar 

  19. Johnstone RM, Adam M, Hammond J, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262(19):9412–9420

    CAS  PubMed  Google Scholar 

  20. Van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf–Bensussan N, Heyman M (2001) Intestinal epithelial cells secrete exosome–like vesicles. Gastroenterology 121(2):337–349

    PubMed  Google Scholar 

  21. Trams EG, Lauter CJ, Salem JN, Heine U (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 645(1):63–70

    CAS  PubMed  Google Scholar 

  22. Bakhti M, Winter C, Simons M (2011) Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J Biol Chem 286(1):787–796

    CAS  PubMed  Google Scholar 

  23. Cooney JR, Hurlburt JL, Selig DK, Harris KM, Fiala JC (2002) Endosomal compartments serve multiple hippocampal dendritic spines from a widespread rather than a local store of recycling membrane. J Neurosci 22(6):2215–2224

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wetzel SA, McKeithan TW, Parker DC (2005) Peptide-specific intercellular transfer of MHC class II to CD4 + T cells directly from the immunological synapse upon cellular dissociation. J Immunol 174(1):80–89

    CAS  PubMed  Google Scholar 

  25. Feingold K, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, Hershman J, Kaltsas G, Koch C, Kopp P (2000) Adipose Tissue

  26. Popescu L, Gherghiceanu M, Cretoiu D, Radu E (2005) The connective connection: interstitial cells of Cajal (ICC) and ICC-like cells establish synapses with immunoreactive cells. Electron microscope study in sity. J Cell Mol Med 9(3):714–730

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Skriner K, Adolph K, Jungblut PR, Burmester GR (2006) Association of citrullinated proteins with synovial exosomes. Arthritis Rheum 54(12):3809–3814

    CAS  PubMed  Google Scholar 

  28. Marzesco A-M, Janich P, Wilsch-Bräuninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118(13):2849–2858

    CAS  PubMed  Google Scholar 

  29. Pisitkun T, Shen R-F, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci 101(36):13368–13373

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Stubbs JD, Lekutis C, Singer KL, Bui A, Yuzuki D, Srinivasan U, Parry G (1990) cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences. Proc Natl Acad Sci 87(21):8417–8421

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360(9329):295–305

    CAS  PubMed  Google Scholar 

  32. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73(10):1907–1920

    CAS  PubMed  Google Scholar 

  33. Görgens A, Giebel B (2020) Extracellular vesicles. In: Essential current concepts in stem cell biology. Springer, New York, pp 219–229

  34. Andaloussi SE, Mäger I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357

    Google Scholar 

  35. Yáñez-Mó M, Siljander PR-M, Andreu Z, Bedina Zavec A, Borràs FE, Buzas EI, Buzas K, Casal E, Cappello F, Carvalho J (2015) Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 4(1):27066

    PubMed  Google Scholar 

  36. Fasken MB, Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH (2020) The RNA exosome and human disease. In: The Eukaryotic RNA exosome. Springer, New York, pp 3–33

  37. Farooqi AA, Desai NN, Qureshi MZ, Librelotto DRN, Gasparri ML, Bishayee A, Nabavi SM, Curti V, Daglia M (2018) Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol Adv 36(1):328–334. https://doi.org/10.1016/j.biotechadv.2017.12.010

    Article  CAS  PubMed  Google Scholar 

  38. Stremersch S, De Smedt SC, Raemdonck K (2016) Therapeutic and diagnostic applications of extracellular vesicles. J Control Release 244:167–183

    CAS  PubMed  Google Scholar 

  39. Urbanelli L, Buratta S, Sagini K, Ferrara G, Lanni M, Emiliani C (2015) Exosome-based strategies for diagnosis and therapy. Recent Pat CNS Drug Discov 10(1):10–27. https://doi.org/10.2174/1574889810666150702124059

    Article  CAS  PubMed  Google Scholar 

  40. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez‐Curtis L, Machalinski B, Ratajczak J, Ratajczak MZ (2005) Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 113(5):752–760

    CAS  PubMed  Google Scholar 

  41. Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 1841(1):108–120. https://doi.org/10.1016/j.bbalip.2013.10.004

    Article  CAS  PubMed  Google Scholar 

  42. Lakkaraju A, Rodriguez-Boulan E (2008) Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 18(5):199–209

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    PubMed  PubMed Central  Google Scholar 

  44. Lobb RJ, Becker M, Wen Wen S, Wong CS, Wiegmans AP, Leimgruber A, Möller A (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles 4(1):27031

    PubMed  Google Scholar 

  45. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654

    CAS  PubMed  Google Scholar 

  46. Jin L, Pahuja KB, Wickliffe KE, Gorur A, Baumgärtel C, Schekman R, Rape M (2012) Ubiquitin-dependent regulation of COPII coat size and function. Nature 482(7386):495

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Han Y, Jia L, Zheng Y, Li W (2018) Salivary exosomes: emerging roles in systemic disease. Int J Biol Sci 14(6):633

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hessvik NP, Llorente A (2017) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 1–16

  49. Möbius W, Ohno-Iwashita Y, Donselaar EGV, Oorschot VM, Shimada Y, Fujimoto T, Heijnen HF, Geuze HJ, Slot JW (2002) Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J Histochem Cytochem 50(1):43–55

    PubMed  Google Scholar 

  50. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247

    CAS  PubMed  Google Scholar 

  51. Brinton LT, Sloane HS, Kester M, Kelly KA (2015) Formation and role of exosomes in cancer. Cell Mol Life Sci 72(4):659–671

    CAS  PubMed  Google Scholar 

  52. Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6(4):287–296

    PubMed  PubMed Central  Google Scholar 

  53. Urbanelli L, Magini A, Buratta S, Brozzi A, Sagini K, Polchi A, Tancini B, Emiliani C (2013) Signaling pathways in exosomes biogenesis, secretion and fate. Genes 4(2):152–170

    PubMed  PubMed Central  Google Scholar 

  54. Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Developmental Cell 12(5):671–682

    CAS  PubMed  Google Scholar 

  55. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19

    CAS  PubMed  Google Scholar 

  56. El-Medany OM, El-Din KAW, Abu ES, Gad NE-H (1999) Chronic liver disease and hepatitis C virus in Egyptian patients. Hepato-Gastroenterology 46(27):1895–1903

    CAS  PubMed  Google Scholar 

  57. Sharma A, Johnson A (2020) Exosome DNA: critical regulator of tumor immunity and a diagnostic biomarker. J Cell Physiol 235(3):1921–1932

    CAS  PubMed  Google Scholar 

  58. Qin J, Xu Q (2014) Functions and application of exosomes. Acta Pol Pharm 71(4):537–543

    PubMed  Google Scholar 

  59. Kim DK, Kang B, Kim OY, Choi DS, Lee J, Kim SR, Go G, Yoon YJ, Kim JH, Jang SC, Park KS, Choi EJ, Kim KP, Desiderio DM, Kim YK, Lötvall J, Hwang D, Gho YS (2013) EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. https://doi.org/10.3402/jev.v2i0.20384

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lamparski HG, Metha-Damani A, Yao J-Y, Patel S, Hsu D-H, Ruegg C, Pecq JBL (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Methods 270(2):211–226

    CAS  PubMed  Google Scholar 

  61. Conigliaro A, Corrado C, Fontana S, Alessandro R (2020) Exosome basic mechanisms. In: Exosomes. Elsevier, New York, pp 1–21

  62. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT (2010) Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS ONE 5(1):e8577

    PubMed  PubMed Central  Google Scholar 

  64. Guescini M, Genedani S, Stocchi V, Agnati LF (2010) Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 117(1):1

    CAS  PubMed  Google Scholar 

  65. Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, Zhao K, Samuel M, Pathan M, Jois M, Chilamkurti N (2016) ExoCarta: a web-based compendium of exosomal cargo. J Mol Biol 428(4):688–692

    CAS  PubMed  Google Scholar 

  66. Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borràs FE, Breakefield X, Budnik V (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10(12):e1001450

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C (2016) Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA 113(8):E968–E977. https://doi.org/10.1073/pnas.1521230113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Belting M, Wittrup A (2008) Nanotubes, exosomes, and nucleic acid–binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J Cell Biol 183(7):1187–1191

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Iavello A, Frech VS, Gai C, Deregibus MC, Quesenberry PJ, Camussi G (2016) Role of Alix in miRNA packaging during extracellular vesicle biogenesis. Int J Mol Med 37(4):958–966

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang G-J, Liu Y, Qin A, Shah SV, Deng Z-b, Xiang X, Cheng Z, Liu C, Wang J, Zhang L (2008) Thymus exosomes-like particles induce regulatory T cells. J Immunol 181(8):5242–5248

    CAS  PubMed  Google Scholar 

  71. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 126(Pt 24):5553–5565. https://doi.org/10.1242/jcs.128868

    Article  CAS  PubMed  Google Scholar 

  72. Hessvik NP, Øverbye A, Brech A, Torgersen ML, Jakobsen IS, Sandvig K, Llorente A (2016) PIKfyve inhibition increases exosome release and induces secretory autophagy. Cell Mol Life Sci 73(24):4717–4737

    CAS  PubMed  Google Scholar 

  73. Smith VL, Jackson L, Schorey JS (2015) Ubiquitination as a mechanism to transport soluble mycobacterial and eukaryotic proteins to exosomes. J Immunol (Baltimore Md: 1950) 195(6):2722–2730. https://doi.org/10.4049/jimmunol.1403186

    Article  CAS  Google Scholar 

  74. Ogawa Y, Miura Y, Harazono A, Kanai-Azuma M, Akimoto Y, Kawakami H, Yamaguchi T, Toda T, Endo T, Tsubuki M (2011) Proteomic analysis of two types of exosomes in human whole saliva. Biol Pharm Bull 34(1):13–23

    CAS  PubMed  Google Scholar 

  75. Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R (2008) Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull 31(6):1059–1062

    CAS  PubMed  Google Scholar 

  76. Martins VR, Dias MS, Hainaut P (2013) Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Curr Opin Oncol 25(1):66–75

    CAS  PubMed  Google Scholar 

  77. Michael A, Bajracharya SD, Yuen PS, Zhou H, Star RA, Illei GG, Alevizos I (2010) Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 16(1):34–38

    CAS  PubMed  Google Scholar 

  78. Ogawa Y, Taketomi Y, Murakami M, Tsujimoto M, Yanoshita R (2013) Small RNA transcriptomes of two types of exosomes in human whole saliva determined by next generation sequencing. Biol Pharm Bull 36(1):66–75

    CAS  PubMed  Google Scholar 

  79. Gallo A, Alevizos I (2013) Isolation of circulating microRNA in saliva. In: Circulating MicroRNAs. Springer, New York, pp 183–190

  80. Gezer U, Özgür E, Cetinkaya M, Isin M, Dalay N (2014) Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int 38(9):1076–1079

    CAS  PubMed  Google Scholar 

  81. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24(6):766

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F, González M, Bernad A, Sánchez-Madrid F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282

    PubMed  Google Scholar 

  83. Choi DS, Kim DK, Kim YK, Gho YS (2013) Proteomics, transcriptomics and lipidomics of exosomes and ectosomes. Proteomics 13(10–11):1554–1571

    CAS  PubMed  Google Scholar 

  84. Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M, De Medina P, Monsarrat B, Perret B, Silvente-Poirot S, Poirot M, Record M (2010) Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 51(8):2105–2120. https://doi.org/10.1194/jlr.M003657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Meleti M, Cassi D, Vescovi P, Setti G, Pertinhez TA, Eleonora M (2020) Salivary biomarkers for diagnosis of systemic diseases and malignant tumors. A Syst Rev

  86. Hogan MC, Manganelli L, Woollard JR, Masyuk AI, Masyuk TV, Tammachote R, Huang BQ, Leontovich AA, Beito TG, Madden BJ (2009) Characterization of PKD protein-positive exosome-like vesicles. J Am Soc Nephrol 20(2):278–288

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Schneider A, Simons M (2013) Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 352(1):33–47

    CAS  PubMed  Google Scholar 

  88. Cheng J, Nonaka T, Ye Q, Wei F, Wong DT (2020) Salivaomics, saliva-exosomics, and saliva liquid biopsy. In: Salivary bioscience. Springer, New York, pp 157–175

  89. Qamar Z, Niazi FH, Tanveer SB, Zeeshan T (2020) Exosomes: salivary biomarkers? Trop J Pharm Res 19(3):667–672

    Google Scholar 

  90. Lee J, Garon E, Wong D (2009) Salivary diagnostics. Orthod Craniofac Res 12(3):206–211

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Skog J, Würdinger T, Van Rijn S, Meijer DH, Gainche L, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Salo T, Vered M (2016) Morphological and molecular features of oral fluid-derived exosomes: oral cancer patients versus healthy individuals. J Cancer Res Clin Oncol 142(1):101–110

    CAS  PubMed  Google Scholar 

  93. Patel S, Patel A, Mathur D, Tanavde V (2020) Abstract B09: Identification of salivary exosomes derived miRNAs as potential early diagnostic markers in oral cancer patients: A liquid biopsy approach. AACR

  94. Byun JS, Hong SH, Choi JK, Jung JK, Lee HJ (2015) Diagnostic profiling of salivary exosomal micro RNA s in oral lichen planus patients. Oral Dis 21(8):987–993

    PubMed  Google Scholar 

  95. Li C, He H, Wang J, Xia X, Zhang M, Wu Q (2019) Possible roles of exosomal miRNAs in the pathogenesis of oral lichen planus. Am J Transl Res 11(9):5313

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zheng X, Chen F, Zhang Q, Liu Y, You P, Sun S, Lin J, Chen N (2017) Salivary exosomal PSMA7: a promising biomarker of inflammatory bowel disease. Protein Cell 8(9):686–695

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhang H, Wang L, Li C, Yu Y, Yi Y, Wang J, Chen D (2019) Exosome-induced regulation in inflammatory bowel disease. Front Immunol 10:1464

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Agha-Hosseini F, Mirzaii-Dizgah I, Rahimi A (2009) Correlation of serum and salivary CA15-3 levels in patients with breast cancer. Med Oral Patol Oral Cir Bucal 14(10):e521–e524

    PubMed  Google Scholar 

  99. Streckfus CF (2019) Salivary biomarkers to assess breast cancer diagnosis and progression: are we there yet? In: Saliva. IntechOpen

  100. Lee Y-H, Kim JH, Zhou H, Kim BW, Wong DT (2012) Salivary transcriptomic biomarkers for detection of ovarian cancer: for serous papillary adenocarcinoma. J Mol Med 90(4):427–434

    CAS  PubMed  Google Scholar 

  101. Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D, Wei F, Lin Y-L, Moro A, Grogan T (2013) Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem 288(37):26888–26897

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Machida T, Tomofuji T, Maruyama T, Yoneda T, Ekuni D, Azuma T, Miyai H, Mizuno H, Kato H, Tsutsumi K (2016) miR–1246 and miR–4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer. Oncol Rep 36(4):2375–2381

    CAS  PubMed  Google Scholar 

  103. Li X, Yang T, Lin J (2012) Spectral analysis of human saliva for detection of lung cancer using surface-enhanced Raman spectroscopy. J Biomed Optic 17(3):037003

    Google Scholar 

  104. Cecchettini A, Finamore F, Puxeddu I, Ferro F, Baldini C (2019) Salivary extracellular vesicles versus whole saliva: new perspectives for the identification of proteomic biomarkers in Sjögren’s syndrome. Clin Exp Rheumatol 37(118):S240–S248

    Google Scholar 

  105. Blonda M, Amoruso A, Martino T, Avolio C (2018) New insights into immune cell-derived extracellular vesicles in multiple sclerosis. Front Neurol 9:604. https://doi.org/10.3389/fneur.2018.00604

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hu S, Wang J, Meijer J, Ieong S, Xie Y, Yu T, Zhou H, Henry S, Vissink A, Pijpe J, Kallenberg C, Elashoff D, Loo JA, Wong DT (2007) Salivary proteomic and genomic biomarkers for primary Sjögren’s syndrome. Arthritis Rheum 56(11):3588–3600. https://doi.org/10.1002/art.22954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ochnio JJ, Scheifele DW, Ho M, Mitchell LA (1997) New, ultrasensitive enzyme immunoassay for detecting vaccine-and disease-induced hepatitis A virus-specific immunoglobulin G in saliva. J Clin Microbiol 35(1):98–101

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang W, Jiang X, Bao J, Wang Y, Liu H, Tang L (2018) Exosomes in pathogen infections: a bridge to deliver molecules and link functions. Front Immunol 9:90–90. https://doi.org/10.3389/fimmu.2018.00090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Adam DJ, Milne AA, Evans SM, Roulston JE, Lee AJ, Ruckley CV, Bradbury AW (1999) Serum amylase isoenzymes in patients undergoing operation for ruptured and non-ruptured abdominal aortic aneurysm. J Vasc Surg 30(2):229–235

    CAS  PubMed  Google Scholar 

  110. Emmons W (1997) Accuracy of oral specimen testing for human immunodeficiency virus. Am J Med 102(4):15–20

    CAS  PubMed  Google Scholar 

  111. Machida T, Tomofuji T, Ekuni D, Maruyama T, Yoneda T, Kawabata Y, Mizuno H, Miyai H, Kunitomo M, Morita M (2015) MicroRNAs in salivary exosome as potential biomarkers of aging. Int J Mol Sci 16(9):21294–21309

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Gonzalez-Begne M, Lu B, Han X, Hagen FK, Hand AR, Melvin JE, Yates III JR (2009) Proteomic analysis of human parotid gland exosomes by multidimensional protein identification technology (MudPIT). J Proteome Res 8(3):1304–1314

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Hunter JB (1928) The action of saliva and gastric juice on the clotting of blood. Br J Surg 16(62):203–207. https://doi.org/10.1002/bjs.1800166205

    Article  Google Scholar 

  114. Berckmans RJ, Sturk A, van Tienen LM, Schaap MCL, Nieuwland R (2011) Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood 117(11):3172–3180. https://doi.org/10.1182/blood-2010-06-290460

    Article  CAS  PubMed  Google Scholar 

  115. Nonaka T, Wong DT (2017) Saliva-exosomics in cancer: molecular characterization of cancer-derived exosomes in saliva. In: The enzymes, vol 42. Elsevier, New York, pp 125–151

  116. Liga A, Vliegenthart A, Oosthuyzen W, Dear J, Kersaudy-Kerhoas M (2015) Exosome isolation: a microfluidic road-map. Lab Chip 15(11):2388–2394

    CAS  PubMed  Google Scholar 

  117. Zlotogorski-Hurvitz A, Dayan D, Chaushu G, Korvala J, Salo T, Sormunen R, Vered M (2015) Human saliva-derived exosomes: comparing methods of isolation. J Histochem Cytochem 63(3):181–189

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhou M, Weber SR, Zhao Y, Chen H, Sundstrom JM (2020) Methods for exosome isolation and characterization. In: Exosomes. Elsevier, New York, pp 23–38

  119. Kim K-Y, Byun J-S, Jung J-K, Choi J-K (2019) Profiling of salivary exosomal micro RNAs in burning mouth syndrome patients. J Oral Med Pain 44(1):25–30

    Google Scholar 

  120. Kastarnova E, Orobets V, Shakhova V, Sevostyanova O, Kizilova N Study of the physicochemical properties of exosome dispersions obtained by ultrafiltration. In: E3S web of conferences, 2019. EDP Sciences, p 01096

  121. Iwai K, Minamisawa T, Suga K, Yajima Y, Shiba K (2016) Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations. J Extracell Vesicles 5(1):30829

    PubMed  Google Scholar 

  122. Rupp A-K, Rupp C, Keller S, Brase JC, Ehehalt R, Fogel M, Moldenhauer G, Marmé F, Sültmann H, Altevogt P (2011) Loss of EpCAM expression in breast cancer derived serum exosomes: role of proteolytic cleavage. Gynecol Oncol 122(2):437–446

    CAS  PubMed  Google Scholar 

  123. György B, Módos K, Pállinger É, Pálóczi K, Pásztói M, Misják P, Deli MA, Sipos Á, Szalai A, Voszka I (2011) Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 117(4):e39–e48

    PubMed  Google Scholar 

  124. Deregibus MC, Figliolini F, D’antico S, Manzini PM, Pasquino C, De Lena M, Tetta C, Brizzi MF, Camussi G (2016) Charge-based precipitation of extracellular vesicles. Int J Mol Med 38(5):1359–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Wang Z, Li F, Rufo J, Chen C, Yang S, Li L, Zhang J, Cheng J, Kim Y, Wu M (2020) Acoustofluidic salivary exosome isolation: a liquid biopsy compatible approach for human papillomavirus–associated oropharyngeal cancer detection. J Mol Diagn 22(1):50–59

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Cheng J, Nonaka T, Wong DTW (2019) Salivary exosomes as nanocarriers for cancer biomarker delivery. Materials (Basel Switzerland). https://doi.org/10.3390/ma12040654

    Article  PubMed Central  Google Scholar 

  127. Hiemstra TF, Charles PD, Gracia T, Hester SS, Gatto L, Al-Lamki R, Floto RA, Su Y, Skepper JN, Lilley KS (2014) Human urinary exosomes as innate immune effectors. J Am Soc Nephrol 25(9):2017–2027

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Rekker K, Saare M, Roost AM, Kubo A-L, Zarovni N, Chiesi A, Salumets A, Peters M (2014) Comparison of serum exosome isolation methods for microRNA profiling. Clin Biochem 47(1–2):135–138

    CAS  PubMed  Google Scholar 

  129. Principe S, Hui ABY, Bruce J, Sinha A, Liu FF, Kislinger T (2013) Tumor-derived exosomes and microvesicles in head and neck cancer: implications for tumor biology and biomarker discovery. Proteomics 13(10–11):1608–1623

    CAS  PubMed  Google Scholar 

  130. Winck FV, Ribeiro ACP, Domingues RR, Ling LY, Riaño-Pachón DM, Rivera C, Brandão TB, Gouvea AF, Santos-Silva AR, Coletta RD (2015) Insights into immune responses in oral cancer through proteomic analysis of saliva and salivary extracellular vesicles. Sci Rep 5:16305

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Wu Z-Z, Wang J-G, Zhang X-L (2009) Diagnostic model of saliva protein finger print analysis of patients with gastric cancer. World J Gastroenterol 15(7):865

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Hu S, Arellano M, Boontheung P, Wang J, Zhou H, Jiang J, Elashoff D, Wei R, Loo JA, Wong DT (2008) Salivary proteomics for oral cancer biomarker discovery. Clin Cancer Res 14(19):6246–6252

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Ohshiro K, Rosenthal DI, Koomen JM, Streckfus CF, Chambers M, Kobayashi R, El-Naggar AK (2007) Pre-analytic saliva processing affect proteomic results and biomarker screening of head and neck squamous carcinoma. Int J Oncol 30(3):743–749

    CAS  PubMed  Google Scholar 

  134. Dowling P, Wormald R, Meleady P, Henry M, Curran A, Clynes M (2008) Analysis of the saliva proteome from patients with head and neck squamous cell carcinoma reveals differences in abundance levels of proteins associated with tumour progression and metastasis. J Proteomics 71(2):168–175

    CAS  PubMed  Google Scholar 

  135. Elashoff D, Zhou H, Reiss J, Wang J, Xiao H, Henson B, Hu S, Arellano M, Sinha U, Le A (2012) Prevalidation of salivary biomarkers for oral cancer detection. Cancer Epidemiol Prev Biomark 21(4):664–672

    CAS  Google Scholar 

  136. Gai C, Camussi F, Broccoletti R, Gambino A, Cabras M, Molinaro L, Carossa S, Camussi G, Arduino PG (2018) Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma. BMC Cancer 18(1):1–11

    Google Scholar 

  137. Aqrawi LA, Galtung HK, Vestad B, Øvstebø R, Thiede B, Rusthen S, Young A, Guerreiro EM, Utheim TP, Chen X (2017) Identification of potential saliva and tear biomarkers in primary Sjögren’s syndrome, utilising the extraction of extracellular vesicles and proteomics analysis. Arthritis Res Ther 19(1):14

    PubMed  PubMed Central  Google Scholar 

  138. Baldini C, Ferro F, Elefante E, Bombardieri S (2018) Biomarkers for Sjögren’s syndrome. Biomark Med 12(3):275–286. https://doi.org/10.2217/bmm-2017-0297

    Article  CAS  PubMed  Google Scholar 

  139. Wood N, Streckfus CF (2015) The expression of lung resistance protein in saliva: a novel prognostic indicator protein for carcinoma of the breast. Cancer Investig 33(10):510–515

    CAS  Google Scholar 

  140. Navarro MA, Mesía R, Díez-Gibert O, Rueda A, Ojeda B, Alonso MC (1997) Epidermal growth factor in plasma and saliva of patients with active breast cancer and breast cancer patients in follow-up compared with healthy women. Breast Cancer Res Treat 42(1):83–86

    CAS  PubMed  Google Scholar 

  141. Streckfus C, Bigler L, Dellinger T, Dai X, Kingman A, Thigpen JT (2000) The presence of soluble c-erbB-2 in saliva and serum among women with breast carcinoma: a preliminary study. Clin Cancer Res 6(6):2363–2370

    CAS  PubMed  Google Scholar 

  142. Streckfus C, Bigler L, Tucci M, Thigpen JT (2000) A preliminary study of CA15-3, c-erbB-2, epidermal growth factor receptor, cathepsin-D, and p53 in saliva among women with breast carcinoma. Cancer Investig 18(2):101–109

    CAS  Google Scholar 

  143. Brooks MN, Wang J, Li Y, Zhang R, Elashoff D, Wong DT (2008) Salivary protein factors are elevated in breast cancer patients. Mol Med Rep 1(3):375–378

    CAS  PubMed  Google Scholar 

  144. Zhang L, Xiao H, Karlan S, Zhou H, Gross J, Elashoff D, Akin D, Yan X, Chia D, Karlan B (2010) Discovery and preclinical validation of salivary transcriptomic and proteomic biomarkers for the non-invasive detection of breast cancer. PLoS ONE 5(12):e15573

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Katsiougiannis S, Chia D, Kim Y, Singh RP, Wong DT (2016) Saliva exosomes from pancreatic tumor–bearing mice modulate NK cell phenotype and antitumor cytotoxicity. FASEB J 31(3):998–1010

    PubMed  PubMed Central  Google Scholar 

  146. Xiao H, Zhang L, Zhou H, Lee JM, Garon EB, Wong DT (2012) Proteomic analysis of human saliva from lung cancer patients using two-dimensional difference gel electrophoresis and mass spectrometry. Mol Cell Proteomics 11(2):M111.012112. https://doi.org/10.1074/mcp.M111.012112

    Article  CAS  PubMed  Google Scholar 

  147. Chen D, Schwartz PE, Li F (1990) Saliva and serum CA 125 assays for detecting malignant ovarian tumors. Obstet Gynecol 75(4):701–704

    CAS  PubMed  Google Scholar 

  148. Zheng X, Chen F, Zhang J, Zhang Q, Lin J (2014) Exosome analysis: a promising biomarker system with special attention to saliva. J Membr Biol 247(11):1129–1136

    CAS  PubMed  Google Scholar 

  149. Sharma S, Rasool HI, Palanisamy V, Mathisen C, Schmidt M, Wong DT, Gimzewski JK (2010) Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano 4(4):1921–1926

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Kapsogeorgou EK, Abu-Helu RF, Moutsopoulos HM, Manoussakis MN (2005) Salivary gland epithelial cell exosomes: a source of autoantigenic ribonucleoproteins. Arthr Rhuem 52(5):1517–1521

    CAS  Google Scholar 

  151. Kumeda N, Ogawa Y, Akimoto Y, Kawakami H, Tsujimoto M, Yanoshita R (2017) Characterization of membrane integrity and morphological stability of human salivary exosomes. Biol Pharm Bull 40(8):1183–1191

    CAS  PubMed  Google Scholar 

  152. Sharma S, Gillespie BM, Palanisamy V, Gimzewski JK (2011) Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir 27(23):14394–14400

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contribution of Islamic Azad University of Boroujerd and Ferdowsi University of Mashhad to provide this wonderful opportunity and good facilities to carry out this study.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

BC contributed substantially to the conception and design of the study, the acquisition of data, or the analysis and interpretation. HC provided critical revision of the article and Provided final approval of the version to publish. HC as a corresponding author verifies that all individuals who made contributions to this study are included either as authors or are acknowledged at the end of the paper.

Corresponding author

Correspondence to Hamid Cheshomi.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheshmi, B., Cheshomi, H. Salivary exosomes: properties, medical applications, and isolation methods. Mol Biol Rep 47, 6295–6307 (2020). https://doi.org/10.1007/s11033-020-05659-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05659-1

Keywords

Navigation