Skip to main content
Log in

Targeting genes involved in nucleopolyhedrovirus DNA multiplication through RNA interference technology to induce resistance against the virus in silkworms

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

RNA interference (RNAi) has become an efficient tool for inducing resistance to viruses in many organisms. In this study, Escherichia coli cells were engineered to produce stable double-stranded RNA (dsRNA) against the nucleopolyhedrosis virus to elicit RNAi in silkworms. The immediate-early-1 (ie-1) and late expression factor-1 (lef-1) genes of the Bombyx mori nucleopolyhedrovirus (BmNPV) involved in viral DNA multiplication were cloned in the plasmid L4440 under the influence of the double T7 promoter and transformed to E. coli HT115 DE3 host cells. On induction with isopropyl β-d-thiogalactopyranoside, these cells efficiently produced dsRNA of the cloned genes. The B. mori larvae were fed with 50 µL of E. coli cells expressing ie-1 and lef-1 dsRNAs (each approximately 25 µg) to elicit RNAi. The semi-quantitative and quantitative PCR analysis of RNA from the midgut of the dsRNA-fed larvae revealed a significant reduction in the expression of the target genes involved in BmNPV multiplication, which restricted virus copy numbers to 100 compared with 1.9 × 105 in the infected controls. Furthermore, the dsRNA-fed infected larvae showed > 50% increased survivability compared with the infected controls. The study revealed the successful use of bacteria as vectors for efficiently delivering dsRNA to elicit RNAi against BmNPV in silkworms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khurad AM, Mahulikar A, Rathod MK, Manoj R, Kanginakudru S, Nagaraju J (2004) Vertical transmission of nucleopolyhedrovirus in the silkworm, Bombyx mori L. J Invertebr Pathol 87:8–15

    Article  CAS  Google Scholar 

  2. Terenius O, Papanicolaou A, Garbutt JS, Eleftherianos I, Huvenne H et al (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57:231–245

    Article  CAS  Google Scholar 

  3. Tabunoki HS, Ninagi O, Fujii H, Banno Y, Nozaki MA (2004) Carotenoid-binding protein (CBP) plays a crucial role in cocoon pigmentation of silkworm (Bombyx mori) larvae. FEBS Lett 567:175–178

    Article  CAS  Google Scholar 

  4. Ohnishi A, Hull JJ, Matsumoto S (2006) Targeted disruption of genes in the Bombyx mori sex pheromone biosynthetic pathway. Proc Natl Acad Sci USA 103:4398–4403

    Article  CAS  Google Scholar 

  5. Liu W, Yang F, Jia S, Miao X, Huang Y (2008) Cloning and characterization of Bmrunt from the silkworm Bombyx mori during embryonic development. Arch Insect Biochem Physiol 69:47–59

    Article  CAS  Google Scholar 

  6. Dai H, Ma L, Wang J, Jiang R, Wang Z, Fei J (2008) Knockdown of ecdysis-triggering hormone gene with abinary UAS/GAL4 RNA interference system leads to lethal ecdysis deficiency in silkworm. Acta Biochim Biophys Sin 40:790–795

    Article  CAS  Google Scholar 

  7. Masumoto M, Yaginuma T, Niimi T (2009) Functional analysis of Ultrabithorax in the silkworm, Bombyx mori using RNAi. Dev Genes Evol 219:437–444

    Article  CAS  Google Scholar 

  8. La Fauce K, Owens L (2012) RNA interference with special reference to combating viruses of crustacea. Indian J Virol 23:226–243

    Article  Google Scholar 

  9. Kanginakudru S, Royer C, Edupalli SV, Jalabert A, Mauchamp B, Chandrashekaraiah, Prasad SV, Chavancy G, Couble P, Nagaraju J (2009) Targeting ie-1 gene by RNAi induces baculoviral resistance in Lepidopteran cell lines and in transgenic silkworms. Insect Mol Biol 16:635–644

    Article  Google Scholar 

  10. Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M et al (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18:81–84

    Article  CAS  Google Scholar 

  11. Isobe R, Kojima K, Matsuyama T, Quan GX, Kanda T, Tamura T, Sahara K, Asano SI, Bando H (2004) Use of RNAi technology to confer enhanced resistance to BmNPV on transgenic silkworms. Arch Virol 149:1931–1940

    CAS  PubMed  Google Scholar 

  12. Subbaiah EV, Royer C, Kanginakudru S, Satyavathi VV, Babu AS, Sivaprasad V, Chavancy G, Darocha M, Jalabert A, Mauchamp B, Basha I, Couble P, Nagaraju J (2013) Engineering silkworms for resistance to Baculovirus through multigene RNA interference. Genetics 193:63–75

    Article  CAS  Google Scholar 

  13. Zhang P, Wang J, Lu Y, Hu Y, Xue R, Cao G, Gong C (2014) Resistance of transgenic silkworm to BmNPV could be improved by silencing ie-1 and lef-1 genes. Gene Ther 21:81–88

    Article  CAS  Google Scholar 

  14. Olson VA, Wetter JA, Friesen PD (2002) Baculovirus transregulator IE1 requires a dimeric nuclear localization element for nuclear import and promoter activation. J Virol 76:9505–9515

    Article  CAS  Google Scholar 

  15. Mikhailov VS, Rohrmann GF (2002) Baculovirus replication factor LEF-1 is a DNA primase. J Virol 76:2287–2297

    Article  CAS  Google Scholar 

  16. Acharya A, Sriram S, Sehrawat S, Rahman M, Sehgal D, Gopinathan KP (2002) Bombyx mori nucleopolyhedrovirus: molecular biology and biotechnological applications for large scale synthesis of recombinant protein. Curr Sci 83:4

    Google Scholar 

  17. Katsuma S, Mita K, Shimada T (2007) ERK- and JNK-dependent signaling pathways contribute to Bombyx mori nucleopolyhedrovirus infection. J Virol 81:13700–13709

    Article  CAS  Google Scholar 

  18. Li Y, Shen S, Hu L, Deng F, Vlak JM, Hu Z, Wang H, Wang M (2018) The functional oligomeric state of tegument protein GP41 is essential for Baculovirus budded virion and occlusion-derived virion assembly. J Virol 92:e02083-17

    Article  Google Scholar 

  19. Brutscher LM, Flenniken ML (2015) RNAi and antiviral defense in the honey bee. J Immunol Res. https://doi.org/10.1155/2015/941897

    Article  PubMed  PubMed Central  Google Scholar 

  20. Scott JG, Michel K, Bartholomay LC, Siegfried BD, Hunter G, Smagghe WB, Zhu KY, Douglas AE (2013) Towards the elements of successful insect RNAi—review. J Insect Physiol 59:1212–1221

    Article  CAS  Google Scholar 

  21. Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391

    Article  CAS  Google Scholar 

  22. Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  CAS  Google Scholar 

  23. Tian H, Peng H, Yao Q, Chen H, Xie Q, Tang B, Zhang W (2009) Developmental control of a Lepidopteran pest Spodoptera exigua by ingestion of bacterial expressing dsRNA of a non-midgut gene. PLoS ONE 4:e6225

    Article  Google Scholar 

  24. Surakasi VP, Mohamed AM, Kim Y (2011) RNA interference of beta 1 integrin subunit impairs development and immune responses of the beet armyworm, Spodoptera exigua J. Insect Physiol 57:1537–1544

    Article  CAS  Google Scholar 

  25. Yang J, Han Z (2014) Efficiency of different methods for dsRNA delivery in cotton bollworm (Helicoverpa armigera). J Integr Agric 13:115–123

    Article  CAS  Google Scholar 

  26. Piot N, Snoeck S, Vanlede M, Smagghe G, Meeus I (2015) The effect of oral administration of dsRNA on viral replication and mortality in Bombus terrestris. Viruses 7:3172–3185

    Article  CAS  Google Scholar 

  27. Timmon L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854

    Article  Google Scholar 

  28. Timmon L, Court DL, Fire A (2001) Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263:103–112

    Article  Google Scholar 

  29. Yu N, Christiaens O, Liu J, Niu J, Cappelle K, Caccia S, Huvenne H, Smagghe G (2013) Delivery of dsRNA for RNAi in insects: an overview and future directions. Insect Sci 20:4–14

    Article  Google Scholar 

  30. Yogindran S, Rajam MV (2015) RNA interference strategy for crop protection against insect pests. In: Soberon M, Gao Y, Bravo A (eds) Bt resistance, characterization and strategies for GM crops producing Bacillius thuringiensis Toxins. CABI Biotechnology Series 4. CAB International, Oxfordshire, pp 162e172

    Google Scholar 

Download references

Acknowledgements

This Research was funded by Central Silk Board, Bengaluru and Technical Collaboration was provided by Professor M.V. Rajam, Department of Genetics, UDSC, New Delhi. The authors would like to acknowledge Dr. Geetha Murthy, Scientist, CSGRC, Hosur and Editingindia for meticulously editing the Manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K S Tulsi Naik.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 357 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, S., Tulsi Naik, K.S., Rajam, M.V. et al. Targeting genes involved in nucleopolyhedrovirus DNA multiplication through RNA interference technology to induce resistance against the virus in silkworms. Mol Biol Rep 47, 5333–5342 (2020). https://doi.org/10.1007/s11033-020-05615-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05615-z

Keywords

Navigation