Skip to main content

Advertisement

Log in

LncRNAs and circular RNAs as endothelial cell messengers in hypertension: mechanism insights and therapeutic potential

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Endothelial cells are major constituents in the vasculature, and they act as important players in vascular homeostasis via secretion/release of vasodilators and vasoconstrictors. In healthy arteries, endothelial cells play a key role in the regulation of vascular tone, cellular adhesion, and angiogenesis. A shift in the functions of the blood vessels toward vasoconstriction, proinflammatory state, oxidative stress and deficiency of nitric oxide (NO) might lead to endothelial dysfunction, a key event implicated in the pathophysiology of cardiovascular metabolic diseases, including diabetes, atherosclerosis, arterial hypertension and pulmonary arterial hypertension (PAH). Thus, reversibility of endothelial dysfunction may be beneficial for maintaining vascular homeostasis. In recent years, accumulative evidence has documented that noncoding RNAs (ncRNAs) are critically involved in endothelial homeostasis. Specifically, long noncoding RNAs (lncRNAs) and circular RNAs are highly expressed in endothelial cells where they serve as important mediators in normal endothelial functions. Dysregulation of lncRNAs and circular RNAs has been tightly associated with hypertension-related endothelial dysfunction. In this review, we will summarize the current progression and underlying mechanisms of lncRNA and circular RNA in endothelial cell biology under hypertensive conditions. We will also highlight their potential as biomarkers or therapeutic targets for hypertension and its associated endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Roth GA, Nguyen G, Forouzanfar MH, Mokdad AH, Naghavi M, Murray CJ (2015) Estimates of global and regional premature cardiovascular mortality in 2025. Circulation 132:1270–1282. https://doi.org/10.1161/circulationaha.115.016021

    Article  PubMed  Google Scholar 

  2. Metra M, Teerlink JR (2017) Heart failure. Lancet 390:1981–1995. https://doi.org/10.1016/s0140-6736(17)31071-1

    Article  PubMed  Google Scholar 

  3. Travieso-Gonzalez A, Nunez-Gil IJ, Riha H, Donaire JAG, Ramakrishna H (2019) Management of arterial hypertension: 2018 ACC/AHA versus ESC guidelines and perioperative implications. J Cardiothorac Vasc Anesth 33:3496–3503. https://doi.org/10.1053/j.jvca.2019.03.068

    Article  PubMed  Google Scholar 

  4. Southgate L, Machado RD (2020) Molecular genetic framework underlying pulmonary arterial hypertension. Nat Rev Cardiol 17:85–95. https://doi.org/10.1038/s41569-019-0242-x

    Article  CAS  PubMed  Google Scholar 

  5. Thompson AAR, Lawrie A (2017) Targeting vascular remodeling to treat pulmonary arterial hypertension. Trends Mol Med 23:31–45. https://doi.org/10.1016/j.molmed.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  6. Leopold JA, Maron BA (2016) Molecular mechanisms of pulmonary vascular remodeling in pulmonary arterial hypertension. Int J Mol Sci. https://doi.org/10.3390/ijms17050761

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sun HJ, Zhu XX, Cai WW, Qiu LY (2017) Functional roles of exosomes in cardiovascular disorders: a systematic review. Eur Rev Med Pharmacol Sci 21:5197–5206. https://doi.org/10.26355/eurrev_201711_13840

    Article  PubMed  Google Scholar 

  8. Ghosh A, Gao L, Thakur A, Siu PM, Lai CWK (2017) Role of free fatty acids in endothelial dysfunction. J Biomed Sci 24:50. https://doi.org/10.1186/s12929-017-0357-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu L, Liu J, Huang Y (2015) Protective effects of glucagon-like peptide 1 on endothelial function in hypertension. J Cardiovasc Pharmacol 65:399–405. https://doi.org/10.1097/fjc.0000000000000176

    Article  CAS  PubMed  Google Scholar 

  10. Konukoglu D, Uzun H (2017) Endothelial dysfunction and hypertension. Adv Exp Med Biol 956:511–540. https://doi.org/10.1007/5584_2016_90

    Article  PubMed  Google Scholar 

  11. Dodson MW, Brown LM, Elliott CG (2018) Pulmonary arterial hypertension. Heart Fail Clin 14:255–269. https://doi.org/10.1016/j.hfc.2018.02.003

    Article  PubMed  Google Scholar 

  12. Sun HJ, Hou B, Wang X, Zhu XX, Li KX, Qiu LY (2016) Endothelial dysfunction and cardiometabolic diseases: role of long non-coding RNAs. Life Sci 167:6–11. https://doi.org/10.1016/j.lfs.2016.11.005

    Article  CAS  PubMed  Google Scholar 

  13. Zhang HN, Xu QQ, Thakur A, Alfred MO, Chakraborty M, Ghosh A, Yu XB (2018) Endothelial dysfunction in diabetes and hypertension: role of microRNAs and long non-coding RNAs. Life Sci 213:258–268. https://doi.org/10.1016/j.lfs.2018.10.028

    Article  CAS  PubMed  Google Scholar 

  14. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF, Gerhardinger C, Sanchez-Gomez DB, Hacisuleyman E, Li E, Spence M, Liapis SC, Mallard W, Morse M, Swerdel MR, D'Ecclessis MF, Moore JC, Lai V, Gong G, Yancopoulos GD, Frendewey D, Kellis M, Hart RP, Valenzuela DM, Arlotta P, Rinn JL (2013) Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife 2:e01749. https://doi.org/10.7554/eLife.01749

    Article  PubMed  PubMed Central  Google Scholar 

  15. Li K, Blum Y, Verma A, Liu Z, Pramanik K, Leigh NR, Chun CZ, Samant GV, Zhao B, Garnaas MK, Horswill MA, Stanhope SA, North PE, Miao RQ, Wilkinson GA, Affolter M, Ramchandran R (2010) A noncoding antisense RNA in tie-1 locus regulates tie-1 function in vivo. Blood 115:133–139. https://doi.org/10.1182/blood-2009-09-242180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurian L, Aguirre A, Sancho-Martinez I, Benner C, Hishida T, Nguyen TB, Reddy P, Nivet E, Krause MN, Nelles DA, Esteban CR, Campistol JM, Yeo GW, Belmonte JCI (2015) Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development. Circulation 131:1278–1290. https://doi.org/10.1161/circulationaha.114.013303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Boulberdaa M, Scott E, Ballantyne M, Garcia R, Descamps B, Angelini GD, Brittan M, Hunter A, McBride M, McClure J, Miano JM, Emanueli C, Mills NL, Mountford JC, Baker AH (2016) A role for the long noncoding RNA SENCR in commitment and function of endothelial cells. Mol Ther 24:978–990. https://doi.org/10.1038/mt.2016.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S, Boon RA, Dimmeler S (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114:1389–1397. https://doi.org/10.1161/circresaha.114.303265

    Article  CAS  PubMed  Google Scholar 

  19. Boeckel JN, Jaé N, Heumüller AW, Chen W, Boon RA, Stellos K, Zeiher AM, John D, Uchida S, Dimmeler S (2015) Identification and characterization of hypoxia-regulated endothelial circular RNA. Circ Res 117:884–890. https://doi.org/10.1161/circresaha.115.306319

    Article  CAS  PubMed  Google Scholar 

  20. Wawrzyniak O, Zarebska Z, Rolle K, Gotz-Wieckowska A (2018) Circular and long non-coding RNAs and their role in ophthalmologic diseases. Acta Biochim Pol 65:497–508. https://doi.org/10.18388/abp.2018_2639

    Article  CAS  PubMed  Google Scholar 

  21. Leimena C, Qiu H (2018) Non-coding RNA in the pathogenesis, progression and treatment of hypertension. Int J Mol Sci. https://doi.org/10.3390/ijms19040927

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488. https://doi.org/10.1126/science.1138341

    Article  CAS  PubMed  Google Scholar 

  23. Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS (2011) lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 39:D146–D151. https://doi.org/10.1093/nar/gkq1138

    Article  CAS  PubMed  Google Scholar 

  24. Parrott AM, Mathews MB (2007) Novel rapidly evolving hominid RNAs bind nuclear factor 90 and display tissue-restricted distribution. Nucleic Acids Res 35:6249–6258. https://doi.org/10.1093/nar/gkm668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ahanda ML, Ruby T, Wittzell H, Bed'Hom B, Chausse AM, Morin V, Oudin A, Chevalier C, Young JR, Zoorob R (2009) Non-coding RNAs revealed during identification of genes involved in chicken immune responses. Immunogenetics 61:55–70. https://doi.org/10.1007/s00251-008-0337-8

    Article  CAS  PubMed  Google Scholar 

  26. Johnsson P, Lipovich L, Grander D, Morris KV (2014) Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta 1840:1063–1071. https://doi.org/10.1016/j.bbagen.2013.10.035

    Article  CAS  PubMed  Google Scholar 

  27. Novikova IV, Hennelly SP, Sanbonmatsu KY (2013) Tackling structures of long noncoding RNAs. Int J Mol Sci 14:23672–23684. https://doi.org/10.3390/ijms141223672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17:47–62. https://doi.org/10.1038/nrg.2015.10

    Article  CAS  PubMed  Google Scholar 

  29. Viereck J, Thum T (2017) Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res 120:381–399. https://doi.org/10.1161/circresaha.116.308434

    Article  CAS  PubMed  Google Scholar 

  30. Boon RA, Jaé N, Holdt L, Dimmeler S (2016) Long noncoding RNAs: from clinical genetics to therapeutic targets? J Am Coll Cardiol 67:1214–1226. https://doi.org/10.1016/j.jacc.2015.12.051

    Article  CAS  PubMed  Google Scholar 

  31. Agha G, Mendelson MM, Ward-Caviness CK, Joehanes R, Huan T, Gondalia R, Salfati E, Brody JA, Fiorito G, Bressler J, Chen BH, Ligthart S, Guarrera S, Colicino E, Just AC, Wahl S, Gieger C, Vandiver AR, Tanaka T, Hernandez DG, Pilling LC, Singleton AB, Sacerdote C, Krogh V, Panico S, Tumino R, Li Y, Zhang G, Stewart JD, Floyd JS, Wiggins KL, Rotter JI, Multhaup M, Bakulski K, Horvath S, Tsao PS, Absher DM, Vokonas P, Hirschhorn J, Fallin MD, Liu C, Bandinelli S, Boerwinkle E, Dehghan A, Schwartz JD, Psaty BM, Feinberg AP, Hou L, Ferrucci L, Sotoodehnia N, Matullo G, Peters A, Fornage M, Assimes TL, Whitsel EA, Levy D, Baccarelli AA (2019) Blood leukocyte DNA methylation predicts risk of future myocardial infarction and coronary heart disease. Circulation 140:645–657. https://doi.org/10.1161/circulationaha.118.039357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arab K, Park YJ, Lindroth AM, Schäfer A, Oakes C, Weichenhan D, Lukanova A, Lundin E, Risch A, Meister M, Dienemann H, Dyckhoff G, Herold-Mende C, Grummt I, Niehrs C, Plass C (2014) Long noncoding RNA TARID directs demethylation and activation of the tumor suppressor TCF21 via GADD45A. Mol Cell 55:604–614. https://doi.org/10.1016/j.molcel.2014.06.031

    Article  CAS  PubMed  Google Scholar 

  33. Jia L, Wang Y, Wang C, Du Z, Zhang S, Wen X, Zhou L, Li H, Chen H, Li D, Zhang S, Li W, Xu W, Hoffman AR, Cui J, Hu JF (2020) Oplr16 serves as a novel chromatin factor to control stem cell fate by modulating pluripotency-specific chromosomal looping and TET2-mediated DNA demethylation. Nucleic Acids Res 48:3935–3948. https://doi.org/10.1093/nar/gkaa097

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xu H, Jiang Y, Xu X, Su X, Liu Y, Ma Y, Zhao Y, Shen Z, Huang B (2019) Inducible degradation of lncRNA Sros1 promotes IFN-γ-mediated activation of innate immune responses by stabilizing Stat1 mRNA. Nat Immunol 20:1621–1630. https://doi.org/10.1038/s41590-019-0542-7

    Article  CAS  PubMed  Google Scholar 

  35. Geisler S, Coller J (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 14:699–712. https://doi.org/10.1038/nrm3679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim C, Kang D, Lee EK, Lee J-S (2017) Long Noncoding RNAs and RNA-binding proteins in oxidative stress, cellular senescence, and age-related diseases. Oxid Med Cell Longev 2017:2062384–2062384. https://doi.org/10.1155/2017/2062384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang X, Shen C, Zhu J, Shen G, Li Z, Dong J (2019) Long noncoding RNAs in the regulation of oxidative stress. Oxid Med Cell Longev 2019:1318795–1318795. https://doi.org/10.1155/2019/1318795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xiao Y, Pan J, Geng Q, Wang G (2019) LncRNA MALAT1 increases the stemness of gastric cancer cells via enhancing SOX2 mRNA stability. FEBS Open Biol 9:1212–1222. https://doi.org/10.1002/2211-5463.12649

    Article  CAS  Google Scholar 

  39. Yoon JH, Abdelmohsen K, Kim J, Yang X, Martindale JL, Tominaga-Yamanaka K, White EJ, Orjalo AV, Rinn JL, Kreft SG, Wilson GM, Gorospe M (2013) Scaffold function of long non-coding RNA HOTAIR in protein ubiquitination. Nat Commun 4:2939. https://doi.org/10.1038/ncomms3939

    Article  CAS  PubMed  Google Scholar 

  40. Hu W, Bi ZY, Chen ZL, Liu C, Li LL, Zhang F, Zhou Q, Zhu W, Song YY, Zhan BT, Zhang Q, Bi YY, Sun CC, Li DJ (2018) Emerging landscape of circular RNAs in lung cancer. Cancer Lett 427:18–27. https://doi.org/10.1016/j.canlet.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  41. Hsiao KY, Sun HS, Tsai SJ (2017) Circular RNA—New member of noncoding RNA with novel functions. Exp Biol Med (Maywood) 242:1136–1141. https://doi.org/10.1177/1535370217708978

    Article  CAS  Google Scholar 

  42. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20:1829–1842. https://doi.org/10.1261/rna.047126.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hermans-Beijnsberger S, van Bilsen M, Schroen B (2018) Long non-coding RNAs in the failing heart and vasculature. Noncoding RNA Res 3:118–130. https://doi.org/10.1016/j.ncrna.2018.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Greene J, Baird AM, Brady L, Lim M, Gray SG, McDermott R, Finn SP (2017) Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci 4:38. https://doi.org/10.3389/fmolb.2017.00038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Qu S, Yang X, Li X, Wang J, Gao Y, Shang R, Sun W, Dou K, Li H (2015) Circular RNA: a new star of noncoding RNAs. Cancer Lett 365:141–148. https://doi.org/10.1016/j.canlet.2015.06.003

    Article  CAS  PubMed  Google Scholar 

  46. Han YN, Xia SQ, Zhang YY, Zheng JH, Li W (2017) Circular RNAs: a novel type of biomarker and genetic tools in cancer. Oncotarget 8:64551–64563. https://doi.org/10.18632/oncotarget.18350

    Article  PubMed  PubMed Central  Google Scholar 

  47. Dong Y, He D, Peng Z, Peng W, Shi W, Wang J, Li B, Zhang C, Duan C (2017) Circular RNAs in cancer: an emerging key player. J Hematol Oncol 10:2. https://doi.org/10.1186/s13045-016-0370-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lopez-Jimenez E, Rojas AM, Andres-Leon E (2018) RNA sequencing and prediction tools for circular RNAs analysis. Adv Exp Med Biol 1087:17–33. https://doi.org/10.1007/978-981-13-1426-1_2

    Article  CAS  PubMed  Google Scholar 

  49. Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, Gäbel G, Beutner F, Scholz M, Thiery J, Musunuru K, Krohn K (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429. https://doi.org/10.1038/ncomms12429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66. https://doi.org/10.1016/j.molcel.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  51. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44:2846–2858. https://doi.org/10.1093/nar/gkw027

    Article  PubMed  PubMed Central  Google Scholar 

  52. Xu W, Erzurum SC (2011) Endothelial cell energy metabolism, proliferation, and apoptosis in pulmonary hypertension. Compr Physiol 1:357–372. https://doi.org/10.1002/cphy.c090005

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ding S, Zhu Y, Liang Y, Huang H, Xu Y, Zhong C (2018) Circular RNAs in vascular functions and diseases. Adv Exp Med Biol 1087:287–297. https://doi.org/10.1007/978-981-13-1426-1_23

    Article  CAS  PubMed  Google Scholar 

  54. Liu Y, Zhang R, Ying K (2015) Long noncoding RNAs: novel links in respiratory diseases (review). Mol Med Rep 11:4025–4031. https://doi.org/10.3892/mmr.2015.3290

    Article  CAS  PubMed  Google Scholar 

  55. Comer BS, Ba M, Singer CA, Gerthoffer WT (2015) Epigenetic targets for novel therapies of lung diseases. Pharmacol Ther 147:91–110. https://doi.org/10.1016/j.pharmthera.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  56. Zhang J, Zhu Y, Wang R (2018) Long noncoding RNAs in respiratory diseases. Histol Histopathol 33:747–756. https://doi.org/10.14670/hh-11-966

    Article  CAS  PubMed  Google Scholar 

  57. Coll-Bonfill N, de la Cruz-Thea B, Pisano MV, Musri MM (2016) Noncoding RNAs in smooth muscle cell homeostasis: implications in phenotypic switch and vascular disorders. Pflugers Arch 468:1071–1087. https://doi.org/10.1007/s00424-016-1821-x

    Article  CAS  PubMed  Google Scholar 

  58. Gu S, Li G, Zhang X, Yan J, Gao J, An X, Liu Y, Su P (2015) Aberrant expression of long noncoding RNAs in chronic thromboembolic pulmonary hypertension. Mol Med Rep 11:2631–2643. https://doi.org/10.3892/mmr.2014.3102

    Article  CAS  PubMed  Google Scholar 

  59. Leisegang MS, Fork C, Josipovic I, Richter FM, Preussner J, Hu J, Miller MJ, Epah J, Hofmann P, Gunther S, Moll F, Valasarajan C, Heidler J, Ponomareva Y, Freiman TM, Maegdefessel L, Plate KH, Mittelbronn M, Uchida S, Kunne C, Stellos K, Schermuly RT, Weissmann N, Devraj K, Wittig I, Boon RA, Dimmeler S, Pullamsetti SS, Looso M, Miller FJ Jr, Brandes RP (2017) Long noncoding RNA MANTIS facilitates endothelial angiogenic function. Circulation 136:65–79. https://doi.org/10.1161/circulationaha.116.026991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Josipovic I, Fork C, Preussner J, Prior KK, Iloska D, Vasconez AE, Labocha S, Angioni C, Thomas D, Ferreiros N, Looso M, Pullamsetti SS, Geisslinger G, Steinhilber D, Brandes RP, Leisegang MS (2016) PAFAH1B1 and the lncRNA NONHSAT073641 maintain an angiogenic phenotype in human endothelial cells. Acta Physiol (Oxf) 218:13–27. https://doi.org/10.1111/apha.12700

    Article  CAS  Google Scholar 

  61. Zhuo Y, Zeng Q, Zhang P, Li G, Xie Q, Cheng Y (2017) Functional polymorphism of lncRNA MALAT1 contributes to pulmonary arterial hypertension susceptibility in Chinese people. Clin Chem Lab Med 55:38–46. https://doi.org/10.1515/cclm-2016-0056

    Article  CAS  PubMed  Google Scholar 

  62. Jiang X, Ning Q (2020) Long noncoding RNAs as novel players in the pathogenesis of hypertension. Hypertens Res. https://doi.org/10.1038/s41440-020-0408-2

    Article  PubMed  Google Scholar 

  63. Jiang X, Lei R, Ning Q (2016) Circulating long noncoding RNAs as novel biomarkers of human diseases. Biomark Med 10:757–769. https://doi.org/10.2217/bmm-2016-0039

    Article  CAS  PubMed  Google Scholar 

  64. Jiang X, Ning Q (2015) The emerging roles of long noncoding RNAs in common cardiovascular diseases. Hypertens Res 38:375–379. https://doi.org/10.1038/hr.2015.26

    Article  CAS  PubMed  Google Scholar 

  65. Xue YZ, Li ZJ, Liu WT, Shan JJ, Wang L, Su Q (2019) Down-regulation of lncRNA MALAT1 alleviates vascular lesion and vascular remodeling of rats with hypertension. Aging (Albany NY) 11:5192–5205. https://doi.org/10.18632/aging.102113

    Article  CAS  Google Scholar 

  66. Chen R, Chen S, Zhang T, Lin J, Wan C, Chen Z, Li H, Ding Y, Wu S (2017) Relationships among long noncoding RNA, environmental factors and hypertension. Wei Sheng Yan Jiu 46:905–912

    PubMed  Google Scholar 

  67. Yu J, Yang Y, Xu Z, Lan C, Chen C, Li C, Chen Z, Yu C, Xia X, Liao Q, Jose PA, Zeng C, Wu G (2020) Long noncoding RNA ahit protects against cardiac hypertrophy through SUZ12 (Suppressor of Zeste 12 protein homolog)-mediated downregulation of MEF2A (Myocyte Enhancer Factor 2A). Circ Heart Fail 13:e006525. https://doi.org/10.1161/circheartfailure.119.006525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Du SS, Zuo XJ, Xin Y, Man JX, Wu ZL (2020) Expression of lncRNA TUG1 in hypertensive patients and its relationship with change state of an illness. Eur Rev Med Pharmacol Sci 24:870–877. https://doi.org/10.26355/eurrev_202001_20071

    Article  PubMed  Google Scholar 

  69. Bayoglu B, Yuksel H, Cakmak HA, Dirican A, Cengiz M (2016) Polymorphisms in the long non-coding RNA CDKN2B-AS1 may contribute to higher systolic blood pressure levels in hypertensive patients. Clin Biochem 49:821–827. https://doi.org/10.1016/j.clinbiochem.2016.02.012

    Article  CAS  PubMed  Google Scholar 

  70. Vausort M, Wagner DR, Devaux Y (2014) Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 115:668–677. https://doi.org/10.1161/circresaha.115.303836

    Article  CAS  PubMed  Google Scholar 

  71. Guo F, Tang C, Li Y, Liu Y, Lv P, Wang W, Mu Y (2018) The interplay of LncRNA ANRIL and miR-181b on the inflammation-relevant coronary artery disease through mediating NF-kappaB signalling pathway. J Cell Mol Med 22:5062–5075. https://doi.org/10.1111/jcmm.13790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gopalakrishnan K, Kumarasamy S, Mell B, Joe B (2015) Genome-wide identification of long noncoding RNAs in rat models of cardiovascular and renal disease. Hypertension 65:200–210. https://doi.org/10.1161/hypertensionaha.114.04498

    Article  CAS  PubMed  Google Scholar 

  73. Wang F, Li L, Xu H, Liu Y, Yang C, Cowley AW Jr, Wang N, Liu P, Liang M (2014) Characteristics of long non-coding RNAs in the Brown Norway rat and alterations in the Dahl salt-sensitive rat. Sci Rep 4:7146. https://doi.org/10.1038/srep07146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu H, Zhu S, Yuan R, Yi Y, Wang H, Gu B, Zhen T (2019) Transcriptome sequencing to detect the potential role of long noncoding RNAs in salt-sensitive hypertensive rats. Biomed Res Int 2019:2816959. https://doi.org/10.1155/2019/2816959

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hou L, Lin Z, Ni Y, Wu Y, Chen D, Song L, Huang X, Hu H, Yang D (2016) Microarray expression profiling and gene ontology analysis of long non-coding RNAs in spontaneously hypertensive rats and their potential roles in the pathogenesis of hypertension. Mol Med Rep 13:295–300. https://doi.org/10.3892/mmr.2015.4554

    Article  CAS  PubMed  Google Scholar 

  76. Lu Q, Meng Q, Qi M, Li F, Liu B (2019) Shear-sensitive lncRNA AF131217.1 inhibits inflammation in HUVECs via regulation of KLF4. Hypertension 73:e25–e34. https://doi.org/10.1161/hypertensionaha.118.12476

    Article  CAS  PubMed  Google Scholar 

  77. Wang YN, Shan K, Yao MD, Yao J, Wang JJ, Li X, Liu B, Zhang YY, Ji Y, Jiang Q, Yan B (2016) Long noncoding RNA-GAS5: a novel regulator of hypertension-induced vascular remodeling. Hypertension 68:736–748. https://doi.org/10.1161/hypertensionaha.116.07259

    Article  CAS  PubMed  Google Scholar 

  78. Yin Q, Wu A, Liu M (2017) Plasma long non-coding RNA (lncRNA) GAS5 is a new biomarker for coronary artery disease. Med Sci Monit 23:6042–6048. https://doi.org/10.12659/msm.907118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhuo X, Wu Y, Yang Y, Gao L, Qiao X, Chen T (2019) LncRNA AK094457 promotes AngII-mediated hypertension and endothelial dysfunction through suppressing of activation of PPARgamma. Life Sci 233:116745. https://doi.org/10.1016/j.lfs.2019.116745

    Article  CAS  PubMed  Google Scholar 

  80. Xu J, Sun Y, Lu J (2020) Knockdown of long noncoding RNA (lncRNA) AK094457 relieved angiotensin II induced vascular endothelial cell injury. Med Sci Monit 26:e919854. https://doi.org/10.12659/msm.919854

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhang X, Yang X, Lin Y, Suo M, Gong L, Chen J, Hui R (2015) Anti-hypertensive effect of Lycium barbarum L. with down-regulated expression of renal endothelial lncRNA sONE in a rat model of salt-sensitive hypertension. Int J Clin Exp Pathol 8:6981–6987

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang Y, Xi P, Xie Y, Zhao C, Xu J, Jiang J (2015) Notoginsenoside R1 reduces blood pressure in spontaneously hypertensive rats through a long non-coding RNA AK094457. Int J Clin Exp Pathol 8:2700–2709

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Miao R, Wang Y, Wan J, Leng D, Gong J, Li J, Liang Y, Zhai Z, Yang Y (2017) Microarray expression profile of circular RNAs in chronic thromboembolic pulmonary hypertension. Medicine (Baltimore) 96:e7354. https://doi.org/10.1097/md.0000000000007354

    Article  CAS  Google Scholar 

  84. Miao R, Gong J, Zhang C, Wang Y, Guo X, Li J, Yang S, Kuang T, Zhong J, Feng H (2019) Hsa_circ_0046159 is involved in the development of chronic thromboembolic pulmonary hypertension. J Thromb Thrombolysis. https://doi.org/10.1007/s11239-019-01998-4

    Article  PubMed  Google Scholar 

  85. Wang J, Zhu MC, Kalionis B, Wu JZ, Wang LL, Ge HY, Chen CC, Tang XD, Song YL, He H, Xia SJ (2018) Characteristics of circular RNA expression in lung tissues from mice with hypoxiainduced pulmonary hypertension. Int J Mol Med 42:1353–1366. https://doi.org/10.3892/ijmm.2018.3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhou S, Jiang H, Li M, Wu P, Sun L, Liu Y, Zhu K, Zhang B, Sun G, Cao C, Wang R (2019) Circular RNA hsa_circ_0016070 is associated with pulmonary arterial hypertension by promoting PASMC proliferation. Mol Ther Nucleic Acids 18:275–284. https://doi.org/10.1016/j.omtn.2019.08.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu N, Jin L, Cai J (2017) Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens 39:454–459. https://doi.org/10.1080/10641963.2016.1273944

    Article  CAS  PubMed  Google Scholar 

  88. Bao X, Zheng S, Mao S, Gu T, Liu S, Sun J, Zhang L (2018) A potential risk factor of essential hypertension in case-control study: circular RNA hsa_circ_0037911. Biochem Biophys Res Commun 498:789–794. https://doi.org/10.1016/j.bbrc.2018.03.059

    Article  CAS  PubMed  Google Scholar 

  89. Zheng S, Gu T, Bao X, Sun J, Zhao J, Zhang T, Zhang L (2019) Circular RNA hsa_circ_0014243 may serve as a diagnostic biomarker for essential hypertension. Exp Ther Med 17:1728–1736. https://doi.org/10.3892/etm.2018.7107

    Article  CAS  PubMed  Google Scholar 

  90. Bao X, He X, Zheng S, Sun J, Luo Y, Tan R, Zhao J, Zhong F, Zhang L (2019) Up-regulation of circular RNA hsa_circ_0037909 promotes essential hypertension. J Clin Lab Anal 33:e22853. https://doi.org/10.1002/jcla.22853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu L, Gu T, Bao X, Zheng S, Zhao J, Zhang L (2019) Microarray profiling of circular RNA identifies hsa_circ_0126991 as a potential risk factor for essential hypertension. Cytogenet Genome Res 157:203–212. https://doi.org/10.1159/000500063

    Article  CAS  PubMed  Google Scholar 

  92. Liu C, Yao MD, Li CP, Shan K, Yang H, Wang JJ, Liu B, Li XM, Yao J, Jiang Q, Yan B (2017) Silencing of circular RNA-ZNF609 ameliorates vascular endothelial dysfunction. Theranostics 7:2863–2877. https://doi.org/10.7150/thno.19353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang Z, Zhang T, Feng R, Huang H, Xia T, Sun C (2019) circARF3 alleviates mitophagy-mediated inflammation by targeting miR-103/TRAF3 in mouse adipose tissue. Mol Ther Nucleic Acids 14:192–203. https://doi.org/10.1016/j.omtn.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  94. Nosalski R, Guzik TJ (2017) Perivascular adipose tissue inflammation in vascular disease. Br J Pharmacol 174:3496–3513. https://doi.org/10.1111/bph.13705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang X, Li DY, Reilly MP (2019) Long intergenic noncoding RNAs in cardiovascular diseases: challenges and strategies for physiological studies and translation. Atherosclerosis 281:180–188. https://doi.org/10.1016/j.atherosclerosis.2018.09.040

    Article  CAS  PubMed  Google Scholar 

  96. Uchida S, Dimmeler S (2015) Long noncoding RNAs in cardiovascular diseases. Circ Res 116:737–750. https://doi.org/10.1161/circresaha.116.302521

    Article  CAS  PubMed  Google Scholar 

  97. Durruthy-Durruthy J, Sebastiano V, Wossidlo M, Cepeda D, Cui J (2016) The primate-specific noncoding RNA HPAT5 regulates pluripotency during human preimplantation development and nuclear reprogramming. Nat Genet 48:44–52. https://doi.org/10.1038/ng.3449

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Fund of the National Natural Science Foundation of China (81700364), Jiangsu Natural Science Foundation (BK20170179, BK20191138), Key Young Medical Talent Project of Jiangsu Health Commission (QNRC2016158), Jiangsu Province Department of Science and Technology (BE2020634), Project funded by China Postdoctoral Science Foundation (2017M611688) and Project funded by Jiangsu Postdoctoral Science Foundation (1701062C).

Author information

Authors and Affiliations

Authors

Contributions

JRZ, and HJS consulted the literature, wrote and reviewed the manuscript. All authors approved the final version for submission.

Corresponding author

Correspondence to Hai-Jian Sun.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Research involving human participants and/or animals

The present article does not contain human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JR., Sun, HJ. LncRNAs and circular RNAs as endothelial cell messengers in hypertension: mechanism insights and therapeutic potential. Mol Biol Rep 47, 5535–5547 (2020). https://doi.org/10.1007/s11033-020-05601-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05601-5

Keywords

Navigation