Skip to main content
Log in

Genome-wide AP2/ERF gene family analysis reveals the classification, structure, expression profiles and potential function in orchardgrass (Dactylis glomerata)

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The AP2/ERF transcription factor (TF) family is of great importance in developmental regulation and responses to stress and pathogenic stimuli. Orchardgrass (Dactylis glomerata), a perennial cold-season forage of high quality in the world’s temperate zones, contributes to grazing land through mixed sowing with alfalfa (Medicago sativa) and white clover (Trifolium repens). However, little is known about AP2/ERF TFs in orchardgrass. In this study, 193 AP2/ERF genes were classified into five subfamilies and 13 subgroups through phylogenetic analysis. Chromosome structure analysis showed that AP2/ERF family genes in orchardgrass were distributed on seven chromosomes and specific conservative sequences were found in each subgroup. Exon–intron structure and motifs in the same subgroup were almost identical, and the unique motifs contributed to the classification and functional annotation of DgERFs. Expression analysis showed tissue-specific expression of DgERFs in roots and flowers, with most DgERFs widely expressed in roots. The expression levels of each subgroup (subgroups Vc, VIIa, VIIIb, IXa, and XIa) were high at the before-heading and heading stages (BH_DON and H_DON). In addition, 12 DgERFs in various tissues and five DgERFs associated with abiotic stresses were selected for qRT-PCR analysis showed that four dehydration-responsive element binding (DREB) genes and one ERF subfamily gene in orchardgrass were regulated with PEG, heat and salt stresses. DgERF056 belonged to ERF subfamily was involved in the processes of flowering and development stage. This study systematic explored the DgERFs at the genome level for the first time, which lays a foundation for a better understanding of AP2/ERF gene function in Dactylis glomerata and other types of forage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Latchman DS (1993) Transcription factors: an overview. Int J Exp Pathol 74:417–422

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jofuku KD, Den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kagaya Y, Ohmiya K, Hattori T (1999) RAV1, a novel DNA-binding protein, binds to bipartite recognition sequence through two distinct DNA-binding domains uniquely found in higher plants. Nucleic Acids Res 27:470–478

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ohme-Takagi M, Shinshi H (1995) Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173–182

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    CAS  PubMed  Google Scholar 

  7. Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646

    CAS  PubMed  Google Scholar 

  8. Chuck G, Meeley RB, Hake S (1998) The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev 12:1145–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dinh TT, Girke T, Liu X, Yant L, Schmid M, Chen X (2012) The floral homeotic protein APETALA2 recognizes and acts through an AT-rich sequence element. Development 139:1978–1986

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ohto MA, Floyd SK, Fischer RL, Goldberg RB, Harada JJ (2009) Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis. Sex Plant Reprod 22:277–289

    PubMed  PubMed Central  Google Scholar 

  12. Kitajima S, Koyama T, Yamada Y, Sato F (1998) Constitutive expression of the neutral PR-5 (OLP, PR-5d) gene in roots and cultured cells of tobacco is mediated by ethylene-responsive cis-element AGCCGCC sequences. Plant Cell Rep 18:173–179

    CAS  PubMed  Google Scholar 

  13. Zhang GY, Chen M, Li LC, Xu ZS, Chen XP, Guo JM, Ma YZ (2009) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60:3781–3796

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sharma MK, Rahul K, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010) Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Genet Genomics 284:455–475

    CAS  PubMed  Google Scholar 

  15. Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed NA, Wang XD, VandenBosch KA, Rose RJ (2008) The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol 146:1622–1636

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao F, Yi R, Hao JF, Hast A, Niu YD (2012) Expression characterization of ethylene response factor gene cMe-ERF during development and ripening of melon (Cucumis melo L.) fruit. Acta Botanica Boreali-Occidentalia Sinica 5:886–889

    Google Scholar 

  17. Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liang CL, Li YN, Zhang XP, Song Y, Wang W, Fang J, Cui WM, Jia XD (2012) Immunotoxicologic assessment of genetically modified drought-resistant wheat T349 with GmDREB1. Zhonghua Yu Fang Yi Xue Za Zhi [Chin J Prev Med] 46:556–560

    CAS  Google Scholar 

  19. Jaglo KR, Kleff S, Amundsen KL, Zhang X, Haake V, Zhang JZ, Deits T, Thomashow MF (2001) Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species. Plant Physiol 127:910–917

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    CAS  PubMed  Google Scholar 

  21. Nakashima K, Shinwari ZK, Sakuma Y, Seki M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2000) Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol Biol 42:657–665

    CAS  PubMed  Google Scholar 

  22. Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguchi-Shinozaki K (2010) Comprehensive analysis of rice DREB2 -type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol Genet Genomics 283:185–196

    CAS  PubMed  Google Scholar 

  24. Li CW, Su RC, Cheng CP, You SJ, Hsieh TH, Chao TC, Chan MT (2011) Tomato RAV transcription factor is a pivotal modulator involved in the AP2/EREBP-mediated defense pathway. Plant Physiol 156:213–227

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sohn KH, Lee SC, Jung HW, Hong JK, Hwang BK (2006) Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance. Plant Mol Biol 61:897–915

    CAS  PubMed  Google Scholar 

  26. Zhao L, Luo Q, Yang C, Han Y, Li W (2008) A RAV-like transcription factor controls photosynthesis and senescence in soybean. Planta 227:1389–1399

    CAS  PubMed  Google Scholar 

  27. Zhao SP, Xu ZS, Zheng WJ, Zhao W, Wang YX, Yu TF, Chen M, Zhou YB, Min DH, Ma YZ, Chai SC, Zhang XH (2017) Genome-wide analysis of the RAV family in soybean and functional identification of GmRAV-03 involvement in salt and drought stresses and exogenous ABA treatment. Front Plant Sci 8:905

    PubMed  PubMed Central  Google Scholar 

  28. Moreno-Cortés A, Hernández-Verdeja T, Sánchez-Jiménez P, González-Melendi P, Aragoncillo C, Allona I (2012) CsRAV1 induces sylleptic branching in hybrid poplar. New Phytol 194:83–90

    PubMed  Google Scholar 

  29. Hu YX, Wang YH, Liu XF, Li JY (2004) Arabidopsis RAV1 is down-regulated by brassinosteroid and may act as a negative regulator during plant development. Cell Res 14:8–15

    CAS  PubMed  Google Scholar 

  30. Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhuang J, Peng RH, Cheng ZM, Zhang J, Cai B, Zhang Z, Gao F, Zhu B, Fu XY, Jin XF, Chen JM, Qiao YS, Xiong AS, Yao QH (2009) Genome-wide analysis of the putative AP2/ERF family genes in Vitis vinifera. Sci Hortic 123:73–81

    CAS  Google Scholar 

  32. Cui L, Feng K, Wang M, Wang M, Deng P, Song W, Nie X (2016) Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in Brachypodium distachyon. BMC Genomics 17:636

    PubMed  PubMed Central  Google Scholar 

  33. Shu Y, Liu Y, Zhang J, Song L, Guo C (2016) Genome-Wide Genome-wide analysis of the AP2/ERF superfamily genes and their responses to abiotic stress in Medicago truncatula. Front Plant Sci 6:1247

    PubMed  PubMed Central  Google Scholar 

  34. Sharma MK, Kumar R, Solanke AU, Sharma R, Tyagi AK, Sharma AK (2010) Identification, phylogeny, and transcript profiling of ERF family genes during development and abiotic stress treatments in tomato. Mol Genet Genomics 284:455–475

    CAS  PubMed  Google Scholar 

  35. Zhuang J, Chen JM, Yao QH, Xiong F, Sun CC, Zhou XR, Zhang J, Xiong AS (2011) Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Mol Biol Rep 38:745–753

    CAS  PubMed  Google Scholar 

  36. Song XM, Liu TK, Duan WK, Ma QH, Ren J, Wang Z, Li Y, Hou XL (2013) Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 14:573–573

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    CAS  PubMed  Google Scholar 

  38. Jin X, Yin X, Ndayambaza B, Zhang Z, Min X, Lin X, Wang Y, Liu W (2019) Genome-wide identification and expression profiling of the ERF gene family in Medicago sativa L. under various abiotic stresses. DNA Cell Biol 38:1056–1068

    CAS  PubMed  Google Scholar 

  39. Sun ZM, Zhou ML, Xiao XG, Tang YX, Wu YM (2014) Genome-wide analysis of AP2/ERF family genes from Lotus corniculatus shows LcERF054 enhances salt tolerance. Funct Integr Genomics 14:453–466

    CAS  PubMed  Google Scholar 

  40. Huang LK, Feng GY, Yan HD, Zhang ZR, Bushman BS, Wang JP, Bombarely A, Li MZ, Yang ZF, Nie G, Xie WG, Xu L, Chen PL, Zhao XX, Jiang WK, Zhang XQ (2020) Genome assembly provides insights into the genome evolution and flowering regulation of orchardgrass. Plant Biotechnol J 18:373–388

    CAS  PubMed  Google Scholar 

  41. Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1040–D1045

    CAS  PubMed  Google Scholar 

  42. Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:257–260

    Google Scholar 

  43. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Feng G, Huang L, Li J, Wang J, Xu L, Pan L, Zhao X, Wang X, Huang T, Zhang X (2017) Comprehensive transcriptome analysis reveals distinct regulatory programs during vernalization and floral bud development of orchardgrass (Dactylis glomerata L.). BMC Plant Biol 17:216

    PubMed  PubMed Central  Google Scholar 

  45. Sharoni AM, Nuruzzaman M, Satoh K, Shimizu T, Kondoh H, Sasaya T, Choi IR, Omura T, Kikuchi S (2011) Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice. Plant Cell Physiol 52:344–360

    CAS  PubMed  Google Scholar 

  46. Wu H, Lv H, Li L, Liu J, Mu S, Li X, Gao J (2015) Genome-wide analysis of the AP2/ERF transcription factors family and the expression patterns of DREB genes in Moso Bamboo (Phyllostachys edulis). PLoS ONE 10:e0126657

    PubMed  PubMed Central  Google Scholar 

  47. Chen HY, Hsieh EJ, Cheng MC, Chen CY, Hwang SY, Lin TP (2016) ORA47 (octadecanoid-responsive AP2/ERF-domain transcription factor 47) regulates jasmonic acid and abscisic acid biosynthesis and signaling through binding to a novel cis-element. New Phytol 211:599–613

    CAS  PubMed  Google Scholar 

  48. Khurshid M (2012) Functional analysis of ORA47, a key regulator of Jasmonate biosynthesis in Arabidopsis. Doctoral Dissertation, Department of Plant Cell Physiology, Institute of Biology Leiden, Faculty of Science, Leiden University, pp 39–70

  49. Thamilarasan SK, Park JI, Jung HJ, Nou IS (2014) Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea. BMC Genomics 15:422

    PubMed  PubMed Central  Google Scholar 

  50. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou ML, Tang YX, Wu YM (2012) Genome-wide analysis of AP2/ERF transcription factor family in Zea mays. Curr Bioinform 7:324–332

    CAS  Google Scholar 

  52. Allen MD, Yamasaki KM, Tateno-Takagi M, Tateno M, Suzuki M (1998) A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J 17:5484–5496

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13:1959–1968

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chern M, Canlas PE, Fitzgerald HA, Ronald PC (2010) Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. Plant J 43:623–635

    Google Scholar 

  55. Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Canella D, Gilmour SJ, Kuhn LA, Thomashow MF (2010) DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKFxETRHP signature sequence. Biochim Biophys Acta 1799:454–462

    CAS  PubMed  Google Scholar 

  57. Tournier B, Sanchez-Ballesta MT, Jones B, Pesquet E, Regad F, Latché A, Pech JC, Bouzayen M (2003) New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element. FEBS Lett 550:149–154

    CAS  PubMed  Google Scholar 

  58. Krizek B (2009) AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning. Plant Physiol 150:1916–1929

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Magnani E, Sjölander K, Hake S (2004) From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell 16:2265–2277

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lin H, Zhu W, Silva JC, Gu X, Buell CR (2006) Intron gain and loss in segmentally duplicated genes in rice. Genome Biol 7:R41

    PubMed  PubMed Central  Google Scholar 

  61. Muhammad R, He GY, Yang GX, Javeed H, Yan X (2012) AP2/ERF transcription factor in rice: genome-wide canvas and syntenic relationships between monocots and eudicots. Evol Bioinform 8:321–355

    Google Scholar 

  62. Yc XU, Hou XL, Xu WW, Shen LL, Lü SW, Zhang SL, Hu CM (2016) Isolation and characterization of an ERF-B3 gene associated with flower abnormalities in non-heading chinese cabbage. J Integr Agric 15:528–536

    Google Scholar 

  63. Liu JX, Li JY, Wang HN, Fu ZD, Liu J, Yu YX (2010) Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. J Exp Bot 62:825–840

    PubMed  PubMed Central  Google Scholar 

  64. Pandey GK, Grant JJ, Cheong YH, Kim BG, Li L, Luan S (2005) ABR1, an APETALA2-domain transcription factor that functions as a repressor of ABA response in Arabidopsis. Plant Physiol 139:1185–1193

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research work was funded by the earmarked fund for the National Natural Science Foundation of China (NSFC 31872997), and Modern Agro-industry Technology Research System (No.CARS-34).

Author information

Authors and Affiliations

Authors

Contributions

XZ and QY—planned and designed the study. LX and GF—wrote the manuscript and performed the experiments. ZY—provided partial experiment and data basis. LH and XX—participated in the revision of the article. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xinquan Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 807 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Feng, G., Yang, Z. et al. Genome-wide AP2/ERF gene family analysis reveals the classification, structure, expression profiles and potential function in orchardgrass (Dactylis glomerata). Mol Biol Rep 47, 5225–5241 (2020). https://doi.org/10.1007/s11033-020-05598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05598-x

Keywords

Navigation