Skip to main content

Advertisement

Log in

PlGF silencing combined with PEDF overexpression: Modeling RPE secretion as potential therapy for retinal neovascularization

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ocular neovascularization is a defining feature of several blinding diseases. We have previously described the effectiveness of long-term pigment epithelium-derived factor (PEDF) expression in the retina of diabetic mice in ameliorating some diabetic retinopathy hallmarks. In this study, we aimed to investigate if the antiangiogenic potential of PEDF overexpression was enhanced in combination with placental growth factor (PlGF) silencing. Human RPE cells were transfected with a self-replicating episomal vector (pEPito) for PEDF overexpression and/or a siRNA targeting PlGF gene. Conditioned media from PEDF overexpression, from PlGF inhibition and from their combination thereof were used to culture human umbilical vein endothelial cells, and their proliferation rate, migration capacity, apoptosis and ability to form tube-like structures were analyzed in vitro. We here demonstrate that pEPito-driven PEDF overexpression in combination with PlGF silencing in RPE cells does not affect their viability and results in an enhanced antiangiogenic activity in vitro. We observed a significant decrease in the migration and proliferation of endothelial cells, and an increase in apoptosis induction as well as a significant inhibitory effect on tube formation. Our findings demonstrate that simultaneous PEDF overexpression and PlGF silencing strongly impairs angiogenesis compared with the single approaches, providing a rationale for combining these therapies as a new treatment for retinal neovascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Campochiaro PA (2013) Ocular neovascularization. J Mol Med 91:311–321. https://doi.org/10.1007/s00109-013-0993-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gariano RF, Gardner TW (2005) Retinal angiogenesis in development and disease. Nature 438:960–966. https://doi.org/10.1038/nature04482

    Article  CAS  PubMed  Google Scholar 

  3. Osaadon P, Fagan XJ, Lifshitz T, Levy J (2014) A review of anti-VEGF agents for proliferative diabetic retinopathy. Eye 28:510–520. https://doi.org/10.1038/eye.2014.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rizzo S, Genovesi-Ebert F, Di Bartolo E et al (2008) Injection of intravitreal bevacizumab (Avastin) as a preoperative adjunct before vitrectomy surgery in the treatment of severe proliferative diabetic retinopathy (PDR). Graefes Arch Clin Exp Ophthalmol 246:837–842. https://doi.org/10.1007/s00417-008-0774-y

    Article  CAS  PubMed  Google Scholar 

  5. Xu J, Li Y, Hong J (2014) Progress of anti-vascular endothelial growth factor therapy for ocular neovascular disease: benefits and challenges. Chin Med J (Engl) 127:1550–1557

    CAS  Google Scholar 

  6. Mintz-Hittner HA, Kuffel RRJ (2008) Intravitreal injection of bevacizumab (avastin) for treatment of stage 3 retinopathy of prematurity in zone I or posterior zone II. Retina 28:831–838. https://doi.org/10.1097/IAE.0b013e318177f934

    Article  PubMed  Google Scholar 

  7. Amadio M, Govoni S, Pascale A (2016) Targeting VEGF in eye neovascularization: What’s new? A comprehensive review on current therapies and oligonucleotide-based interventions under development. Pharmacol Res 103:253–269. https://doi.org/10.1016/j.phrs.2015.11.027

    Article  CAS  PubMed  Google Scholar 

  8. Wu L, Martinez-Castellanos MA, Quiroz-Mercado H et al (2008) Twelve-month safety of intravitreal injections of bevacizumab (Avastin): results of the Pan-American Collaborative Retina Study Group (PACORES). Graefe’s Arch Clin Exp Ophthalmol 246:81–87. https://doi.org/10.1007/s00417-007-0660-z

    Article  CAS  Google Scholar 

  9. Jardeleza MSR, Miller JW (2009) Review of anti-VEGF therapy in proliferative diabetic retinopathy. Semin Ophthalmol 24:87–92. https://doi.org/10.1080/08820530902800330

    Article  PubMed  Google Scholar 

  10. Nguyen QD, De Falco S, Behar-Cohen F et al (2018) Placental growth factor and its potential role in diabetic retinopathy and other ocular neovascular diseases. Acta Ophthalmol 96:1–9. https://doi.org/10.1111/aos.13325

    Article  Google Scholar 

  11. Carmeliet P (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583. https://doi.org/10.1038/87904

    Article  CAS  PubMed  Google Scholar 

  12. Spirin KS, Saghizadeh M, Lewin SL et al (1999) Basement membrane and growth factor gene expression in normal and diabetic human retinas. Curr Eye Res 18:490–499. https://doi.org/10.1076/ceyr.18.6.490.5267

    Article  CAS  PubMed  Google Scholar 

  13. Khaliq A, Foreman D, Ahmed A et al (1998) Increased expression of placenta growth factor in proliferative diabetic retinopathy. Lab Invest 78:109–116

    CAS  PubMed  Google Scholar 

  14. Yamashita H, Eguchi S, Watanabe K et al (1999) Expression of placenta growth factor (PIGF) in ischaemic retinal diseases. Eye 13:372–374. https://doi.org/10.1016/0014-4835(91)90248-d

    Article  PubMed  Google Scholar 

  15. Kowalczuk L, Touchard E, Omri S et al (2011) Placental growth factor contributes to micro-vascular abnormalization and blood-retinal barrier breakdown in diabetic retinopathy. PLoS ONE. https://doi.org/10.1371/journal.pone.0017462

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yonekura H, Sakurai S, Liu X et al (1999) Placenta growth factor and vascular endothelial growth factor B and C expression in microvascular endothelial cells and pericytes. Implication in autocrine and paracrine regulation of angiogenesis. J Biol Chem 274:35172–35178. https://doi.org/10.1074/jbc.274.49.35172

    Article  CAS  PubMed  Google Scholar 

  17. Ando R, Noda K, Namba S et al (2014) Aqueous humour levels of placental growth factor in diabetic retinopathy. Acta Ophthalmol. 92:245–246. https://doi.org/10.1111/aos.12251

    Article  Google Scholar 

  18. Jonas JB, Jonas RA, Neumaier M, Findeisen P (2012) Cytokine concentration in aqueous humor of eyes with diabetic macular edema. Retina 32:2150–2157. https://doi.org/10.1097/IAE.0b013e3182576d07

    Article  CAS  PubMed  Google Scholar 

  19. Kovacs K, Marra KV, Yu G et al (2015) Angiogenic and inflammatory vitreous biomarkers associated with increasing levels of retinal ischemia. Invest Ophthalmol Vis Sci 56:6523–6530. https://doi.org/10.1167/iovs.15-16793

    Article  CAS  PubMed  Google Scholar 

  20. Huang H, He J, Johnson DK et al (2015) Deletion of placental growth factor prevents diabetic retinopathy and is associated with Akt activation and HIF1 a -VEGF pathway inhibition. Diabetes 64:200–212. https://doi.org/10.2337/db14-0016

    Article  CAS  PubMed  Google Scholar 

  21. Dawson DW, Volpert OVV, Gillis P et al (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285(80):245–248. https://doi.org/10.1126/science.285.5425.245

    Article  CAS  PubMed  Google Scholar 

  22. King GL, Suzuma K (2000) Pigment-epithelium-derived factor-a key coordinator of retinal neuronal and vascular functions. N Engl J Med 342:349–351. https://doi.org/10.1056/NEJM200002033420511

    Article  CAS  PubMed  Google Scholar 

  23. Ohno-Matsui K, Morita I, Tombran-Tink J et al (2001) Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. J Cell Physiol 189:323–333. https://doi.org/10.1002/jcp.10026

    Article  CAS  PubMed  Google Scholar 

  24. Ogata N, Nishikawa M, Nishimura T et al (2002) Unbalanced vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor in diabetic retinopathy. Am J Ophthalmol 134:348–353. https://doi.org/10.1016/s0002-9394(02)01568-4

    Article  CAS  PubMed  Google Scholar 

  25. Calado SM, Diaz-Corrales F, Silva GA (2016) pEPito-driven PEDF expression ameliorates diabetic retinopathy hallmarks. Hum Gene Ther Methods 27:79–86. https://doi.org/10.1089/hgtb.2015.169

    Article  CAS  PubMed  Google Scholar 

  26. Araujo RS, Santos DF, Silva GA (2018) The role of the retinal pigment epithelium and Muller cells secretome in neovascular retinal pathologies. Biochimie 155:104–108. https://doi.org/10.1016/j.biochi.2018.06.019

    Article  CAS  PubMed  Google Scholar 

  27. Davis AA, Bernstein PS, Bok D et al (1995) A human retinal pigment epithelial cell line that retains epithelial characteristics after prolonged culture. Invest Ophthalmol Vis Sci 36:955–964

    CAS  PubMed  Google Scholar 

  28. Akrami H, Soheili Z-S, Sadeghizadeh M et al (2011) PlGF gene knockdown in human retinal pigment epithelial cells. Graefe’s Arch Clin Exp Ophthalmol 249:537–546. https://doi.org/10.1007/s00417-010-1567-7

    Article  Google Scholar 

  29. Bradley J, Ju ÆM, Robinson ÆGS (2007) Combination therapy for the treatment of ocular neovascularization. Angiogenesis 10:141–148. https://doi.org/10.1007/s10456-007-9069-x

    Article  CAS  PubMed  Google Scholar 

  30. Hombrebueno JR, Ali IHA, Xu H, Chen M (2015) Sustained intraocular VEGF neutralization results in retinal neurodegeneration in the Ins2 Akita diabetic mouse. Sci Rep 5:18316. https://doi.org/10.1038/srep18316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park HL, Kim JH, Park CK (2014) Neuronal cell death in the inner retina and the influence of vascular endothelial growth factor inhibition in a diabetic rat model. Am J Pathol 184:1–11. https://doi.org/10.1016/j.ajpath.2014.02.016

    Article  CAS  Google Scholar 

  32. Storkebaum E, Lambrechts D, Carmeliet P (2004) VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. BioEssays 26:943–954. https://doi.org/10.1002/bies.20092

    Article  CAS  PubMed  Google Scholar 

  33. Araujo RS, Silva MS, Santos DF, Silva GA (2020) Dysregulation of trophic factors contributes to diabetic retinopathy in the Ins2(Akita) mouse. Exp Eye Res 194:108027. https://doi.org/10.1016/j.exer.2020.108027

    Article  CAS  PubMed  Google Scholar 

  34. Huo X, Li Y, Jiang Y et al (2015) Inhibition of ocular neovascularization by co-inhibition of VEGF-A and PLGF. Cell Physiol Biochem 35:1787–1796. https://doi.org/10.1159/000373990

    Article  CAS  PubMed  Google Scholar 

  35. Rakic J, Lambert V, Devy L et al (2003) Placental growth factor, a member of the VEGF Family, contributes to the development of choroidal neovascularization. Invest Ophthalmol Vis Sci 44:3186–3193. https://doi.org/10.1167/iovs.02-1092

    Article  PubMed  Google Scholar 

  36. Tombran-Tink J, Chader GG, Johnson LV (1991) PEDF: a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp Eye Res 53:411–414. https://doi.org/10.1016/0014-4835(91)90248-d

    Article  CAS  PubMed  Google Scholar 

  37. Huang Q, Wang S, Sorenson C, Sheibani N (2008) PEDF-deficient mice exhibit an enhanced rate of retinal vascular expansion and are more sensitive to hyperroxia-mediated vessel obliteration. Exp Eye Res 87:226–241. https://doi.org/10.1016/j.exer.2008.06.003.PEDF-Deficient

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park K, Jin J, Hu Y, Zhou K (2011) Overexpression of pigment epithelium – derived factor inhibits retinal inflammation and neovascularization. Am J Pathol 178:688–698. https://doi.org/10.1016/j.ajpath.2010.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cayouette M, Smith SB, Becerra SPP, Gravel C (1999) Pigment epithelium-derived factor delays the death of photoreceptors in mouse models of inherited retinal degenerations. Neurobiol Dis 6:523–532. https://doi.org/10.1006/nbdi.1999.0263

    Article  CAS  PubMed  Google Scholar 

  40. Cao W, Tombran-Tink J, Chen W et al (1999) Pigment epithelium-derived factor protects cultured retinal neurons against hydrogen peroxide-induced cell death. J Neurosci Res 57:789–800. https://doi.org/10.1002/(SICI)1097-4547(19990915)57:6%3c789:AID-JNR4%3e3.0.CO;2-M

    Article  CAS  PubMed  Google Scholar 

  41. Streck CJ, Zhang Y, Zhou J et al (2005) Adeno-associated virus vector-mediated delivery of pigment epithelium-derived factor restricts neuroblastoma angiogenesis and growth. J Pediatr Surg 40:236–243. https://doi.org/10.1016/j.jpedsurg.2004.09.049

    Article  PubMed  Google Scholar 

  42. Haurigot V, Villacampa P, Ribera A et al (2012) Long-term retinal PEDF overexpression prevents neovascularization in a murine adult model of retinopathy. PLoS ONE 7:1–12. https://doi.org/10.1371/journal.pone.0041511

    Article  CAS  Google Scholar 

  43. Colella P, Ronzitti G, Mingozzi F (2018) Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev 8:87–104. https://doi.org/10.1016/j.omtm.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  44. Chen Q, Cheng P, Song NA et al (2012) Antitumor activity of placenta-derived mesenchymal stem cells producing pigment epithelium-derived factor in a mouse melanoma model. Oncol Lett 4:413–418. https://doi.org/10.3892/ol.2012.772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bai Y, Huang L, Xu X et al (2012) Polyethylene glycol-modified pigment epithelial-derived factor : new prospects for treatment of retinal neovascularization. J Pharmacol Exp Ther 342:131–139

    Article  CAS  Google Scholar 

  46. Bai Y-J, Huang L-Z, Xu X-L et al (2012) Polyethylene glycol-modified pigment epithelial-derived factor: new prospects for treatment of retinal neovascularization. J Pharmacol Exp Ther 342:131–139. https://doi.org/10.1124/jpet.112.192575

    Article  CAS  PubMed  Google Scholar 

  47. Michalczyk ER, Chen L, Fine D et al (2018) Pigment epithelium-derived factor (PEDF) as a regulator of wound angiogenesis. Sci Rep 8:11142. https://doi.org/10.1038/s41598-018-29465-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou Y, Tu C, Zhao Y et al (2016) Biochemical and biophysical research communications placental growth factor enhances angiogenesis in human intestinal microvascular endothelial cells via PI3K/Akt pathway : potential implications of in fl ammation bowel disease. Biochem Biophys Res Commun 470:967–974. https://doi.org/10.1016/j.bbrc.2016.01.073

    Article  CAS  PubMed  Google Scholar 

  49. Arezumand R, Mahdian R, Zeinali S (2016) Identification and characterization of a novel nanobody against human placental growth factor to modulate angiogenesis. Mol Immunol 78:183–192. https://doi.org/10.1016/j.molimm.2016.09.012

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Fundação para a Ciência e Tecnologia (Grant No. SFRH/BD/114051/2016 individual fellowship to Rute Araújo), Projetos de Investigação Científica e Desenvolvimento Tecnológico (IC&DT), Grant No. 02/SAICT/2017/028121 (to Gabriela A. Silva), and the Marie Curie Reintegration Grant (Grant No. PIRG-GA-2009-249314 to Gabriela A. Silva) under the FP7 program. iNOVA4Health—UID/Multi/04462/2013, a program financially supported by Fundação para a Ciência e Tecnologia / Ministério da Educação e Ciência, through national funds and co-funded by FEDER under the PT2020 Partnership Agreement is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela A. Silva.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araújo, R.S., Silva, G.A. PlGF silencing combined with PEDF overexpression: Modeling RPE secretion as potential therapy for retinal neovascularization. Mol Biol Rep 47, 4413–4425 (2020). https://doi.org/10.1007/s11033-020-05496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05496-2

Keywords

Navigation