Skip to main content

Advertisement

Log in

Molecular mechanism of action and pharmacokinetic properties of methotrexate

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Since its discovery in 1945, methotrexate has become a standard therapy for number of diseases, including oncological, inflammatory and pulmonary ones. Major physiological interactions of methotrexate include folate pathway, adenosine, prostaglandins, leukotrienes and cytokines. Methotrexate is used in treatment of pulmonary sarcoidosis as a second line therapy and is drug of choice in patients who are not candidates for corticosteroid therapy, with recommended starting weekly dose of 5–15 mg. Number of studies dealt with methotrexate use in rheumatoid arthritis and oncological patients. Authors are conducting research on oral methotrexate use and pharmacokinetics in chronic sarcoidosis patients and have performed literature research to better understand molecular mechanisms of methotrexate action as well as high level pharmacokinetic considerations. Polyglutamation of methotrexate affects its pharmacokinetic and pharmacodynamic properties and prolongs its effect. Bile excretion plays significant role due to extensive enterohepatic recirculation, although majority of methotrexate is excreted through urine. Better understanding of its pharmacokinetic properties in sarcoidosis patients warrant optimizing therapy when corticosteroids are contraindicated in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

γGH:

γ-Glutamate hydrolase

7-OH-MTX:

7-Hydroxy-MTX

ADP:

Adenosine diphosphate

AICAR:

5-Aminoimidazole-4-carboxamide ribonucleoside

AO:

Aldehyde oxidase

ATIC:

AICAR transformylase

ATP:

Adenosine triphosphate

COX:

Cyclooxygenase

DAMPA:

4-Amino-deoxy-N10-methylpteroic acid

DHF:

Dihydrofolate

DHFR:

Dihydrofolate reductase

dTMP:

2-Deoxythymidine-5-monophosphate

dUMP:

2-Deoxyuridine-5-monophosphate

Ecto5′NT:

Ecto-5′-nucleotidase

ENTPD:

Ectonucleoside triphosphate diphosphohydrolase

GAR:

Glycinamide ribonucleotide

GART:

GAR transaminase

IL-1:

Interleukin-1

IL-1β:

Interleukin-1β

MTX:

Methotrexate

NF-kB:

Nuclear factor kapa-B

PGE2:

Prostaglandin E2

RA:

Rheumatoid arthritis

RP-HPLC:

Reversed phase high performance liquid chromatography

THF:

Tetrahydrofolate

TLR:

Toll-like receptors

TNF-α:

Tumor necrosis factor alfa

References

  1. Malaviya AN (2016) Landmark papers on the discovery of methotrexate for the treatment of rheumatoid arthritis and other systemic inflammatory rheumatic diseases: a fascinating story. Int J Rheum Dis 19:844–851

    Article  PubMed  Google Scholar 

  2. Brown PM, Pratt AG, Isaacs JD (2016) Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat Rev Rheumatol 12:731–742

    Article  CAS  PubMed  Google Scholar 

  3. Howard SC, McCormick J, Pui CH, Buddington RK, Harvey RD (2016) Preventing and managing toxicities of high-dose methotrexate. Oncologist 21:1471–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Walling J (2006) From methotrexate to pemetrexed and beyond. A review of the pharmacodynamic and clinical properties of antifolates. Invest New Drugs 24:37–77

    Article  PubMed  Google Scholar 

  5. Gubner R, August S, Ginsberg V (1951) Therapeutic suppression of tissue reactivity. II. Effect of aminopterin in rheumatoid arthritis and psoriasis. Am J Med Sci 221:176–182

    Article  CAS  PubMed  Google Scholar 

  6. Weinblatt M (2013) Methotrexate in rheumatoid arthritis: a quarter century of development. Trans Am Clin Climatol Assoc 124:16–25

    PubMed  PubMed Central  Google Scholar 

  7. Maksimović V, Goločorbin-Kon S, Mikov M, Cvejić J, Pavlović Popović Z, Vukmirović S (2020) New horizons of methotrexate application. PONS Med J. https://doi.org/10.5937/pomc17-24188

    Article  Google Scholar 

  8. Kašiković Lečić S, Pavlović Popović Z, Zvezdin B, Kukavica D (2011) Sarkoidoza u trudnoći i postpartalnom period. Pneumon 48:41–46

    Google Scholar 

  9. Judson M (2014) Advances in the diagnosis and treatment of sarcoidosis. F1000Prime Rep 6:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cremers JP et al (2013) Multinational evidence-based World Association of Sarcoidosis and Other Granulomatous Disorders recommendations for the use of methotrexate in sarcoidosis: integrating systematic literature research and expert opinion of sarcoidologists worldwide. Curr Opin Pulm Med 19:545–561

    Article  CAS  PubMed  Google Scholar 

  11. https://www.stopsarcoidosis.org/wp-content/uploads/FSR-Physicians-Protocol1.pdf. Accessed 03 Mar 2020

  12. Baughman R, Lower E (1999) A clinical approach to the use of methotrexate for sarcoidosis. Thorax 54:742–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lower E, Baughman R (1995) Prolonged use of methotrexate for sarcoidosis. Arch Intern Med 155:846–851

    Article  CAS  PubMed  Google Scholar 

  14. Goljan-Geremek A et al (2014) Methotrexate as a single agent for treating pulmonary sarcoidosis: a single centre real-life prospective study. Pneumonol Alergol Pol 82:518–533

    Article  PubMed  Google Scholar 

  15. Fang C, Zhang Q, Wang N, Jing X, Xu Z (2019) Effectiveness and tolerability of methotrexate in pulmonary sarcoidosis: a single center real-world study. Sarcoidosis VDLD. https://doi.org/10.3614/svdld.v36i3.8449

    Article  Google Scholar 

  16. Vizel I, Vizel A (2015) Methotrexate as a single agent for the treatment of patients with progressive pulmonary sarcoidosis. Eur Respir J. https://doi.org/10.1183/13993003.congress-2015.PA843

    Article  Google Scholar 

  17. Baughman RP, Winget DB, Lower EE (2000) Methotrexate is steroid sparing in acute sarcoidosis: results of a double blind, randomized trial. Sarcoidosis Vasc Diffuse Lung Dis 17:60–66

    CAS  PubMed  Google Scholar 

  18. Lower EE, Baughman RP (1990) The use of low dose methotrexate in refractory sarcoidosis. Am J Med Sci 299:153–157

    Article  CAS  PubMed  Google Scholar 

  19. Pia G, Pascalis L, Aresu G, Rosetti L, Ledda MA (1996) Evaluation of the efficacy and toxicity of the cyclosporine A-flucortolone-methotrexate combination in the treatment of sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 13:146–152

    CAS  PubMed  Google Scholar 

  20. Gavrysyuk V, Merenkova E, Gumeniuk G, Gumeniuk M, Dziublyk Y (2018) Effectiveness and safety of methotrexate monotherapy in patients with pulmonary sarcoidosis. Georgian Med News 283:34–38

    Google Scholar 

  21. Isshiki T et al (2013) Usefulness of low-dose methotrexate monotherapy for treating sarcoidosis. Intern Med 52:2727–2732

    Article  CAS  PubMed  Google Scholar 

  22. Vucinic VM (2002) What is the future of methotrexate in sarcoidosis? A study and review. Curr Opin Pulm Med 8:470–476

    Article  PubMed  Google Scholar 

  23. https://clinicaltrials.gov/ct2/show/NCT04314193?term=methotrexate&cond=sarcoidosis&draw=2&rank=1

  24. Chabner BA et al (1985) Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Invest 76:907–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hawwa AF, AlBawab A, Rooney M, Wedderburn LR, Beresford MW, McElnay JC (2015) Methotrexate polyglutamates as a potential marker of adherence to long-term therapy in children with juvenile idiopathic arthritis and juvenile dermatomyositis: an observational, cross-sectional study. Arthritis Res Ther 17:295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chan ES, Cronstein BN (2010) Methotrexate—how does it really work? Nat Rev Rheumatol 6:175–178

    Article  CAS  PubMed  Google Scholar 

  27. Hou Z, Matherly LH (2014) Biology of the major facilitative folate transporters SLC19A1 and SLC46A1. Curr Top Membr 73:175–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neradil J, Pavlasova G, Veselska R (2012) New mechanisms for an old drug; DHFR- and non-DHFR-mediated effects of methotrexate in cancer cells. Klin Onkol 25(Suppl 2):S87–S92

    Google Scholar 

  29. Assaraf YG (2006) The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Updat 9:227–246

    Article  CAS  PubMed  Google Scholar 

  30. Appaji RN, Ambili M, Jala VR, Subramanya HS, Savithri HS (2003) Structure-function relationship in serine hydroxymethyltransferase. Biochim Biophys Acta 1647:24–29

    Article  CAS  Google Scholar 

  31. https://pubchem.ncbi.nlm.nih.gov/compound/methyl-tetrahydrofolate. Accessed 22 Feb 2019.

  32. Stamp LK, Hazlett J, Roberts RL, Frampton C, Highton J, Hessian PA (2012) Adenosine receptor expression in rheumatoid synovium: a basis for methotrexate action. Arthritis Res Ther. https://doi.org/10.1186/ar3871

    Article  PubMed  PubMed Central  Google Scholar 

  33. Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15:813–827

    Article  CAS  PubMed  Google Scholar 

  34. Haskó G, Cronstein B (2013) Regulation of inflammation by adenosine. Front Immunol 4:85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783:673–694

    Article  CAS  PubMed  Google Scholar 

  36. Montesinos MC, Takedachi M, Thompson LF, Wilder TF, Fernández P, Cronstein BN (2007) The antiinflammatory mechanism of methotrexate depends on extracellular conversion of adenine nucleotides to adenosine by ecto-5'-nucleotidase: findings in a study of ecto-5'-nucleotidase gene-deficient mice. Arthritis Rheum 56:1440–1445

    Article  CAS  PubMed  Google Scholar 

  37. Montesinos MC et al (2003) Adenosine A2A or A3 receptors are required for inhibition of inflammation by methotrexate and its analog MX-68. Arthritis Rheum 48:240–247

    Article  CAS  PubMed  Google Scholar 

  38. Vergne P et al (1998) Methotrexate and cyclooxygenase metabolism in cultured human rheumatoid synoviocytes. J Rheumatol 25:433–440

    CAS  PubMed  Google Scholar 

  39. Mello SB, Barros DM, Silva AS, Laurindo IM, Novaes GS (2000) Methotrexate as a preferential cyclooxygenase 2 inhibitor in whole blood of patients with rheumatoid arthritis. Rheumatology (Oxford) 39:533–536

    Article  CAS  Google Scholar 

  40. Sperling RI, Benincaso AI, Anderson RJ, Coblyn JS, Austen KF, Weinblatt ME (1992) Acute and chronic suppression of leukotriene B4 synthesis EX vivo in neutrophils from patients with rheumatoid arthritis beginning treatment with methotrexate. Arthritis Rheum 35:376–384

    Article  CAS  PubMed  Google Scholar 

  41. Van den Berg W (2001) Anti-cytokine therapy in chronic destructive arthritis. Arthritis Res 3:18–26

    Article  PubMed  Google Scholar 

  42. Chang DM, Weinblatt ME, Schur PH (1992) The effects of methotrexate on interleukin 1 in patients with rheumatoid arthritis. J Rheumatol 19:1678–1682

    CAS  PubMed  Google Scholar 

  43. Olsen N, Spurlock C, Aune T (2014) Methotrexate induces production of IL-1 and IL-6 in the monocytic cell line U937. Arthritis Res Ther. https://doi.org/10.1186/ar4444

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sung JY et al (2000) Methotrexate suppresses the interleukin-6 induced generation of reactive oxygen species in the synoviocytes of rheumatoid arthritis. Immunopharmacology 47:35–44

    Article  CAS  PubMed  Google Scholar 

  45. Spadaro A, Taccari E, Riccieri V, Sensi F, Sili Scavalli A, Zoppini A (1997) Relationship of soluble interleukin-2-receptor and interleukin-6 with class-specific rheumatoid factors during low-dose methotrexate treatment in rheumatoid arthritis. Rev Rhum Engl Ed 64:89–94

    CAS  PubMed  Google Scholar 

  46. Constantin A et al (1998) Antiinflammatory and immunoregulatory action of methotrexate in the treatment of rheumatoid arthritis: evidence of increased interleukin-4 and interleukin-10 gene expression demonstrated in vitro by competitive reverse transcriptase-polymerase chain reaction. Arthritis Rheum 41:48–57

    Article  CAS  PubMed  Google Scholar 

  47. Chan ES, Cronstein BN (2002) Molecular action of methotrexate in inflammatory diseases. Arthritis Res 4:266–273

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bannwarth B, Péhourcq F, Schaeverbeke T, Dehais J (1996) Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis. Clin Pharmacokinet 30:194–210

    Article  CAS  PubMed  Google Scholar 

  49. Morgacheva O, Furst DE (2010) Use of MTX in the elderly and in patients with compromised renal function. Clin Exp Rheumatol 28:S85–94

    CAS  PubMed  Google Scholar 

  50. Hoekstra M, Haagsma C, Neef C, Proost J, Knuif A, van de Laar M (2004) Bioavailability of higher dose methotrexate comparing oral and subcutaneous administration in patients with rheumatoid arthritis. J Rheumatol 31:645–648

    CAS  PubMed  Google Scholar 

  51. Goodman S, Cronstein B, Bykerk V (2015) Outcomes related to methotrexate dose and route of administration in patients with rheumatoid arthritis: a systematic literature review. Clin Exp Rheumatol 33:272–278

    PubMed  Google Scholar 

  52. Oguey D, Kölliker F, Gerber NJ, Reichen J (1992) Effect of food on the bioavailability of low-dose methotrexate in patients with rheumatoid arthritis. Arthritis Rheum 35:611–614

    Article  CAS  PubMed  Google Scholar 

  53. Hamilton RA, Kremer JM (1995) The effects of food on methotrexate absorption. J Rheumatol 22:630–632

    CAS  PubMed  Google Scholar 

  54. Kozloski GD, De Vito JM, Kisicki JC, Johnson JB (1992) The effect of food on the absorption of methotrexate sodium tablets in healthy volunteers. Arthritis Rheum 35:761–764

    Article  CAS  PubMed  Google Scholar 

  55. Dupuis LL, Koren G, Silverman ED, Laxer RM (1995) Influence of food on the bioavailability of oral methotrexate in children. J Rheumatol 22:1570–1573

    CAS  PubMed  Google Scholar 

  56. Baggott JE, Morgan SL (2009) Methotrexate catabolism to 7-hydroxymethotrexate in rheumatoid arthritis alters drug efficacy and retention and is reduced by folic acid supplementation. Arthritis Rheum 60:2257–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baggott JE, Morgan SL, Koopman WJ (1998) The effect of methotrexate and 7-hydroxymethotrexate on rat adjuvant arthritis and on urinary aminoimidazole carboxamide excretion. Arthritis Rheum 41:1407–1410

    Article  CAS  PubMed  Google Scholar 

  58. Fox RI, Morgan SL, Smith HT, Robbins BA, Choc MG, Baggott JE (2003) Combined oral cyclosporin and methotrexate therapy in patients with rheumatoid arthritis elevates methotrexate levels and reduces 7-hydroxymethotrexate levels when compared with methotrexate alone. Rheumatology (Oxford) 42:989–994

    Article  CAS  Google Scholar 

  59. Van Roon EN, van de Laar MA (2010) Methotrexate bioavailability. Clin Exp Rheumatol 28:S27–S32

    PubMed  Google Scholar 

  60. Widemann BC et al (2000) Pharmacokinetics and metabolism of the methotrexate metabolite 2, 4-diamino-N(10)-methylpteroic acid. J Pharmacol Exp Ther 294:894–901

    CAS  PubMed  Google Scholar 

  61. Korell J et al (2014) Comparison of intracellular methotrexate kinetics in red blood cells with the kinetics in other cell types. Br J Clin Pharmacol 77:493–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vallon V, Osswald H (2009) Adenosine receptors and the kidney. Handb Exp Pharmacol 193:443–470

    Article  CAS  Google Scholar 

  63. Griffin D, Said HM (1987) The enterohepatic circulation of methotrexate in vivo: inhibition by bile salt. Cancer Chemother Pharmacol 19:40–41

    Article  CAS  PubMed  Google Scholar 

  64. Trifunović J, Borčić V, Vukmirović S, Vasović V, Mikov M (2017) Bile acids and their oxo derivatives: environmentally safe materials for drug design and delivery. Drug Chem Toxicol 40:397–405

    Article  PubMed  CAS  Google Scholar 

  65. Suda Y, Akazawa S (1990) Biliary and pancreatic excretion of methotrexate (MTX) and 5-FU on the MTX/5-FU sequential therapy. Gan To Kagaku Ryoho 17:1357–1363

    CAS  PubMed  Google Scholar 

  66. Goločorbin-Kon S, Mikov M, Cvejić Hogervorst J, Al-Salami H, Maksimović V (2018) Dried blood spot: utilising dry blood for pharmacokinetic investigations—an old method with great future for therapeutic drug monitoring. Vojnosanit Pregl 75:1222–1225

    Article  Google Scholar 

  67. Chen G, Fawcett JP, Mikov M, Tucker IG (2009) Simultaneous determination of methotrexate and its polyglutamate metabolites in Caco-2 cells by liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 50:262–266

    Article  CAS  PubMed  Google Scholar 

  68. Laketa J, Radovanovic M, Kojic T, Stojanovic G, Vukmirovic S, Mikov M, Stamenkovic Z (2017) Determination of electrical parameters of dried blood spot samples with different concentration of methotrexate. 2017 IEEE East-West Design & Test Symposium (EWDTS), Novi Sad. https://open.uns.ac.rs/handle/123456789/9637

Download references

Funding

This research was supported by HORIZON2020 MEDLEM Project No. 690876 and the Project for Scientific and Technological Development of Vojvodina No. 114-451-2072/2016-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Maksimovic.

Ethics declarations

Conflicts of interest

All authors have no conflicts of interest that are relevant to the content of this review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimovic, V., Pavlovic-Popovic, Z., Vukmirovic, S. et al. Molecular mechanism of action and pharmacokinetic properties of methotrexate. Mol Biol Rep 47, 4699–4708 (2020). https://doi.org/10.1007/s11033-020-05481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05481-9

Keywords

Navigation