Skip to main content

Advertisement

Log in

Potential of stem cell therapy in intracerebral hemorrhage

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Spontaneous intracerebral hemorrhage (ICH) is a common disease associated with high mortality and morbidity. The treatment of patients with ICH includes medical and surgical interventions. New areas of surgical intervention have been focused on the evacuation of hematoma through minimally invasive neurosurgery. In contrast, there have been no significant advances in the development of medical interventions for functional recovery after ICH. Stem cells exert multiple therapeutic functions and have emerged as a promising treatment strategy. Herein, we summarized the pathophysiology of ICH and its treatment targets, and we introduced the therapeutic mechanisms of stem cells (e.g. neutrotrophy and neuroregeneration). Moreover, we reviewed and summarized the experimental designs of the preclinical studies, including the types of cells and the timing and routes of stem cell administration. We further listed and reviewed the completed/published and ongoing clinical trials supporting the safety and efficacy of stem cell therapy in ICH. The limitations of translating preclinical studies into clinical trials and the objectives of future studies were discussed. In conclusion, current literatures showed that stem cell therapy is a promising treatment in ICH and further translation research on judiciously selected group of patients is warranted before it can be extensively applied in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Krishnamurthi RV, Feigin VL, Forouzanfar MH, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson LM, Truelsen T, O'Donnell M, Venketasubramanian N, Barker-Collo S, Lawes CM, Wang W, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray C (2013) Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. The Lancet Global health 1:e259–281. https://doi.org/10.1016/s2214-109x(13)70089-5

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chan CL, Ting HW, Huang HT (2014) The incidence, hospital expenditure, and 30 day and 1 year mortality rates of spontaneous intracerebral hemorrhage in Taiwan. J Clinical Neurosci 21:91–94. https://doi.org/10.1016/j.jocn.2013.03.030

    Article  Google Scholar 

  3. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ (2010) Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. The Lancet Neurology 9:167–176. https://doi.org/10.1016/s1474-4422(09)70340-0

    Article  PubMed  Google Scholar 

  4. de Oliveira Manoel AL, Goffi A, Zampieri FG, Turkel-Parrella D, Duggal A, Marotta TR, Macdonald RL, Abrahamson S (2016) The critical care management of spontaneous intracranial hemorrhage: a contemporary review. Crit Care 20:272. https://doi.org/10.1186/s13054-016-1432-0

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gao L, Xu W, Li T, Chen J, Shao A, Yan F, Chen G (2018) Stem Cell Therapy: A Promising Therapeutic Method for Intracerebral Hemorrhage. Cell Transplant 27:1809–1824. https://doi.org/10.1177/0963689718773363

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pischiutta F, Sammali E, Parolini O, Carswell HVO, Zanier ER (2018) Placenta-Derived Cells for Acute Brain Injury. Cell Transplant 27:151–167. https://doi.org/10.1177/0963689717732992

    Article  PubMed  PubMed Central  Google Scholar 

  7. Turnbull MT, Zubair AC, Meschia JF, Freeman WD (2019) Mesenchymal stem cells for hemorrhagic stroke: status of preclinical and clinical research. Regenerative Medicine. 4:10. https://doi.org/10.1038/s41536-019-0073-8

    Article  PubMed  Google Scholar 

  8. Fernandez-Susavila H, Bugallo-Casal A, Castillo J, Campos F (2019) Adult Stem Cells and Induced Pluripotent Stem Cells for Stroke Treatment. Fronti Neurol 10:908. https://doi.org/10.3389/fneur.2019.00908

    Article  Google Scholar 

  9. Dabrowska S, Andrzejewska A, Lukomska B, Janowski M (2019) Neuroinflammation as a target for treatment of stroke using mesenchymal stem cells and extracellular vesicles. J Neuroinflammation 16:178. https://doi.org/10.1186/s12974-019-1571-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Corey S, Bonsack B, Heyck M, Shear A, Sadanandan N, Zhang H, Borlongan CV (2020) Harnessing the anti-inflammatory properties of stem cells for transplant therapy in hemorrhagic stroke. Brain Hemorrhages. https://doi.org/10.1016/j.hest.2019.12.005

    Article  Google Scholar 

  11. Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. The Lancet Neurology 5:53–63. https://doi.org/10.1016/s1474-4422(05)70283-0

    Article  PubMed  Google Scholar 

  12. Mracsko E, Veltkamp R (2014) Neuroinflammation after intracerebral hemorrhage. Frontiers Cellular Neuroscience 8:388. https://doi.org/10.3389/fncel.2014.00388

    Article  Google Scholar 

  13. Kuo LT, Chen CM, Li CH, Tsai JC, Chiu HC, Liu LC, Tu YK, Huang AP (2011) Early endoscope-assisted hematoma evacuation in patients with supratentorial intracerebral hemorrhage: case selection, surgical technique, and long-term results. Neurosurg Focus 30:E9. https://doi.org/10.3171/2011.2.Focus10313

    Article  PubMed  Google Scholar 

  14. Hersh EH, Gologorsky Y, Chartrain AG, Mocco J, Kellner CP (2018) Minimally Invasive Surgery for Intracerebral Hemorrhage. Current Neurol Neurosci Rep 18:34. https://doi.org/10.1007/s11910-018-0836-4

    Article  CAS  Google Scholar 

  15. Cordeiro MF, Horn AP (2015) Stem cell therapy in intracerebral hemorrhage rat model. World J Stem Cells 7:618–629. https://doi.org/10.4252/wjsc.v7.i3.618

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dharmasaroja P (2009) Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke. Journal of clinical neuroscience 16:12–20. https://doi.org/10.1016/j.jocn.2008.05.006

    Article  PubMed  Google Scholar 

  17. Matsiko A, Levingstone TJ, O'Brien FJ (2013) Advanced strategies for articular cartilage defect repair. Materials 6:637–668. https://doi.org/10.3390/ma6020637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jeon D, Chu K, Lee ST, Jung KH, Ban JJ, Park DK, Yoon HJ, Jung S, Yang H, Kim BS, Choi JY, Kim SH, Kim JM, Won CH, Kim M, Lee SK, Roh JK (2013) Neuroprotective effect of a cell-free extract derived from human adipose stem cells in experimental stroke models. Neurobiology Disease 54:414–420. https://doi.org/10.1016/j.nbd.2013.01.015

    Article  CAS  Google Scholar 

  19. Yang C, Zhou L, Gao X, Chen B, Tu J, Sun H, Liu X, He J, Liu J, Yuan Q (2011) Neuroprotective effects of bone marrow stem cells overexpressing glial cell line-derived neurotrophic factor on rats with intracerebral hemorrhage and neurons exposed to hypoxia/reoxygenation. Neurosurgery 68:691–704. https://doi.org/10.1227/NEU.0b013e3182098a8a

    Article  PubMed  Google Scholar 

  20. Otero-Ortega L, Gomez de Frutos MC, Laso-Garcia F, Rodriguez-Frutos B, Medina-Gutierrez E, Lopez JA, Vazquez J, Diez-Tejedor E, Gutierrez-Fernandez M (2018) Exosomes promote restoration after an experimental animal model of intracerebral hemorrhage. Journal Cerebral Blood Flow and Metabolism 38:767–779. https://doi.org/10.1177/0271678x17708917

    Article  CAS  Google Scholar 

  21. Shen H, Yao X, Li H, Li X, Zhang T, Sun Q, Ji C, Chen G (2018) Role of Exosomes Derived from miR-133b Modified MSCs in an experimental rat model of intracerebral hemorrhage. J Mol Neurosci 64:421–430. https://doi.org/10.1007/s12031-018-1041-2

    Article  CAS  PubMed  Google Scholar 

  22. Joo HS, Suh JH, Lee HJ, Bang ES, Lee JM (2020) Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. Int J Mol Sci. https://doi.org/10.3390/ijms21030727

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hong SB, Yang H, Manaenko A, Lu J, Mei Q, Hu Q (2019) Potential of Exosomes for the Treatment of Stroke. Cell Transplant 28:662–670. https://doi.org/10.1177/0963689718816990

    Article  PubMed  Google Scholar 

  24. Deng L, Gao X, Fan G, Yang C (2019) Effects of GDNF-transfected marrow stromal cells on rats with intracerebral hemorrhage. J Stroke Cerebrovascular Dis 28:2555–2562. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.06.002

    Article  Google Scholar 

  25. Li G, Yu H, Liu N, Zhang P, Tang Y, Hu Y, Zhang Y, Pan C, Deng H, Wang J, Li Q, Tang Z (2019) Overexpression of CX3CR1 in adipose-derived stem cells promotes cell migration and functional recovery after experimental intracerebral hemorrhage. Frontiers Neurosci 13:462. https://doi.org/10.3389/fnins.2019.00462

    Article  Google Scholar 

  26. Wang C, Cao J, Duan S, Xu R, Yu H, Huo X, Qian Y (2020) Effect of MicroRNA-126a-3p on Bone Marrow Mesenchymal Stem Cells Repairing Blood-brain Barrier and Nerve Injury after Intracerebral Hemorrhage. Journal of Stroke and Cerebrovascular Diseases. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104748

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zhang H, Wang Y, Lv Q, Gao J, Hu L, He Z (2018) MicroRNA-21 overexpression promotes the neuroprotective efficacy of mesenchymal stem cells for treatment of intracerebral hemorrhage. Fronti Neurol 9:931. https://doi.org/10.3389/fneur.2018.00931

    Article  Google Scholar 

  28. Xu W, Gao L, Zheng J, Li T, Shao A, Reis C, Chen S, Zhang J (2018) The Roles of MicroRNAs in Stroke: possible therapeutic targets. Cell Transplant 27:1778–1788. https://doi.org/10.1177/0963689718773361

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hanna J, Hossain GS, Kocerha J (2019) The Potential for microRNA Therapeutics and Clinical Research. Frontiers in genetics 10:478. https://doi.org/10.3389/fgene.2019.00478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang AP-H Human pcMSCsimproved neurological deficits in intracerebral hemorrhage rats. Paper presented at the International Stroke Conference 2020, Los Angeles, USA,

  31. Choi BY, Kim OJ, Min SH, Jeong JH, Suh SW, Chung TN (2018) Human Placenta-Derived Mesenchymal Stem Cells Reduce Mortality and Hematoma Size in a Rat Intracerebral Hemorrhage Model in an Acute Phase. Stem Cells Int 2018:1658195. https://doi.org/10.1155/2018/1658195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Min S, Kim OJ, Bae J, Chung TN (2018) Effect of pretreatment with the NADPH oxidase inhibitor apocynin on the therapeutic efficacy of human placenta-derived mesenchymal stem cells in intracerebral hemorrhage. Int J Mol Sci. https://doi.org/10.3390/ijms19113679

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu M, Zhang R, Zou Q, Chen Y, Zhou M, Li X, Ran R, Chen Q (2018) Comparison of the Biological Characteristics of Mesenchymal Stem Cells Derived from the Human Placenta and Umbilical Cord. Scientific Rep 8:5014. https://doi.org/10.1038/s41598-018-23396-1

    Article  CAS  Google Scholar 

  34. Hu Y, Liu N, Zhang P, Pan C, Zhang Y, Tang Y, Deng H, Aimaiti M, Zhang Y, Zhou H, Wu G, Tang Z (2016) Preclinical Studies of Stem Cell Transplantation in Intracerebral Hemorrhage: a Systemic Review and Meta-Analysis. Mol Neurobiol 53:5269–5277. https://doi.org/10.1007/s12035-015-9441-6

    Article  CAS  PubMed  Google Scholar 

  35. Huang P, Freeman WD, Edenfield BH, Brott TG, Meschia JF, Zubair AC (2019) Safety and Efficacy of Intraventricular Delivery of Bone Marrow-Derived Mesenchymal Stem Cells in Hemorrhagic Stroke Model. Scientific reports 9:5674. https://doi.org/10.1038/s41598-019-42182-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adami R, Scesa G, Bottai D (2014) Stem cell transplantation in neurological diseases: improving effectiveness in animal models. Frontiers in cell and developmental biology 2:17. https://doi.org/10.3389/fcell.2014.00017

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hsu YC, Chen SL, Wang DY, Chiu IM (2013) Stem cell-based therapy in neural repair. Biomedical journal 36:98–105. https://doi.org/10.4103/2319-4170.113226

    Article  PubMed  Google Scholar 

  38. Marsh SE, Blurton-Jones M (2017) Neural stem cell therapy for neurodegenerative disorders: The role of neurotrophic support. Neurochem Int 106:94–100. https://doi.org/10.1016/j.neuint.2017.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ryu S, Lee SH, Kim SU, Yoon BW (2016) Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain. Neural Regene Res 11:298–304. https://doi.org/10.4103/1673-5374.177739

    Article  CAS  Google Scholar 

  40. Xu W, Zheng J, Gao L, Li T, Zhang J, Shao A (2017) Neuroprotective Effects of Stem Cells in Ischemic Stroke. Stem Cells International 2017:4653936. https://doi.org/10.1155/2017/4653936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giusto E, Donega M, Cossetti C, Pluchino S (2014) Neuro-immune interactions of neural stem cell transplants: from animal disease models to human trials. Exp Neurol 260:19–32. https://doi.org/10.1016/j.expneurol.2013.03.009

    Article  CAS  PubMed  Google Scholar 

  42. Rosado-de-Castro PH, de Carvalho FG, de alves XE, Freitas GR, Mendez-Otero R, Pimentel-Coelho PM (2016) Review of preclinical and clinical studies of bone marrow-derived cell therapies for intracerebral hemorrhage. Stem Cells Int 2016:18. https://doi.org/10.1155/2016/4617983

    Article  CAS  Google Scholar 

  43. Wang Z, He D, Zeng Y-Y, Zhu L, Yang C, Lu Y-J, Huang J-Q, Cheng X-Y, Huang X-H, Tan X-J (2019) The spleen may be an important target of stem cell therapy for stroke. J Neuroinflammation 16:20. https://doi.org/10.1186/s12974-019-1400-0

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, Katakowski M, Zhang LJ, Lu M, Janakiraman N, Chopp M (2002) Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 59:514–523. https://doi.org/10.1212/wnl.59.4.514

    Article  CAS  PubMed  Google Scholar 

  45. Henchcliffe C, Parmar M (2018) Repairing the brain: cell replacement using stem cell-based technologies. J Parkinson’s Dis 8:S131–s137. https://doi.org/10.3233/jpd-181488

    Article  Google Scholar 

  46. Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6:425–436. https://doi.org/10.1038/nrc1889

    Article  CAS  PubMed  Google Scholar 

  47. Hermann DM, Peruzzotti-Jametti L, Schlechter J, Bernstock JD, Doeppner TR, Pluchino S (2014) Neural precursor cells in the ischemic brain - integration, cellular crosstalk, and consequences for stroke recovery. Frontiers Cellular Neurosci 8:291–291. https://doi.org/10.3389/fncel.2014.00291

    Article  CAS  Google Scholar 

  48. Yoo SW, Kim SS, Lee SY, Lee HS, Kim HS, Lee YD, Suh-Kim H (2008) Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp Mol Med 40:387–397. https://doi.org/10.3858/emm.2008.40.4.387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Anthony S, Borlongan CV (2017) Recent progress in regenerative medicine for brain disorders. Brain Circ 3:121–123. https://doi.org/10.4103/bc.bc_26_17

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shimamura N, Mtsuda N, Ktayama K, Kakuta K, Katagai T, Naraoka M, Ohkuma H (2017) Stem Cell Therapies for Intracerebral Hemorrhages. Curr Drug Deliv 14:758–765. https://doi.org/10.2174/1567201813666160922115830

    Article  CAS  PubMed  Google Scholar 

  51. Bedini G, Bersano A, Zanier ER, Pischiutta F, Parati EA (2018) Mesenchymal Stem Cell Therapy in Intracerebral Haemorrhagic Stroke. Curr Med Chem 25:2176–2197. https://doi.org/10.2174/0929867325666180111101410

    Article  CAS  PubMed  Google Scholar 

  52. Su LJ, Wu MS, Hui YY, Chang BM, Pan L, Hsu PC, Chen YT, Ho HN, Huang YH, Ling TY, Hsu HH, Chang HC (2017) Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs. Scientific reports 7:45607. https://doi.org/10.1038/srep45607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cui C, Cui Y, Gao J, Li R, Jiang X, Tian Y, Wang K, Cui J (2017) Intraparenchymal treatment with bone marrow mesenchymal stem cell-conditioned medium exerts neuroprotection following intracerebral hemorrhage. Molecular Med Rep 15:2374–2382. https://doi.org/10.3892/mmr.2017.6223

    Article  CAS  Google Scholar 

  54. Chen J, Tang YX, Liu YM, Chen J, Hu XQ, Liu N, Wang SX, Zhang Y, Zeng WG, Ni HJ, Zhao B, Chen YF, Tang ZP (2012) Transplantation of adipose-derived stem cells is associated with neural differentiation and functional improvement in a rat model of intracerebral hemorrhage. CNS Neurosci Ther 18:847–854. https://doi.org/10.1111/j.1755-5949.2012.00382.x

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gao L, Li PP, Shao TY, Mao X, Qi H, Wu BS, Shan M, Ye L, Cheng HW (2020) Neurotoxic role of interleukin-17 in neural stem cell differentiation after intracerebral hemorrhage. Neural regeneration research 15:1350–1359. https://doi.org/10.4103/1673-5374.272614

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kuramoto Y, Takagi T, Tatebayashi K, Beppu M, Doe N, Fujita M, Yoshimura S (2019) Intravenous administration of human adipose-derived stem cells ameliorates motor and cognitive function for intracerebral hemorrhage mouse model. Brain Res 1711:58–67. https://doi.org/10.1016/j.brainres.2018.12.042

    Article  CAS  PubMed  Google Scholar 

  57. Zhang Y, Deng H, Hu Y, Pan C, Wu G, Li Q, Tang Z (2019) Adipose-derived mesenchymal stem cells stereotactic transplantation alleviate brain edema from intracerebral hemorrhage. J Cell Biochem 120:14372–14382. https://doi.org/10.1002/jcb.28693

    Article  CAS  PubMed  Google Scholar 

  58. Cui J, Cui C, Cui Y, Li R, Sheng H, Jiang X, Tian Y, Wang K, Gao J (2017) Bone Marrow Mesenchymal Stem Cell Transplantation Increases GAP-43 Expression via ERK1/2 and PI3K/Akt Pathways in Intracerebral Hemorrhage. Cellular Physiol Biochem 42:137–144. https://doi.org/10.1159/000477122

    Article  CAS  Google Scholar 

  59. Ding R, Lin C, Wei S, Zhang N, Tang L, Lin Y, Chen Z, Xie T, Chen X, Feng Y, Wu L (2017) Therapeutic benefits of mesenchymal stromal cells in a rat model of hemoglobin-induced hypertensive intracerebral hemorrhage. Mol Cells 40:133–142. https://doi.org/10.14348/molcells.2017.2251

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bhasin A, Srivastava MV, Kumaran SS, Mohanty S, Bhatia R, Bose S, Gaikwad S, Garg A, Airan B (2011) Autologous mesenchymal stem cells in chronic stroke. Cerebrovascular diseases extra 1:93–104. https://doi.org/10.1159/000333381

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chen L, Xi H, Huang H, Zhang F, Liu Y, Chen D, Xiao J (2013) Multiple cell transplantation based on an intraparenchymal approach for patients with chronic phase stroke. Cell Transplant 22(Suppl 1):S83–91. https://doi.org/10.3727/096368913x672154

    Article  PubMed  Google Scholar 

  62. Li ZM, Zhang ZT, Guo CJ, Geng FY, Qiang F, Wang LX (2013) Autologous bone marrow mononuclear cell implantation for intracerebral hemorrhage-a prospective clinical observation. Clin Neurol Neurosurg 115:72–76. https://doi.org/10.1016/j.clineuro.2012.04.030

    Article  PubMed  Google Scholar 

  63. Chang Z, Mao G, Sun L, Ao Q, Gu Y, Liu Y (2016) Cell therapy for cerebral hemorrhage: Five year follow-up report. Exp Ther Med 12:3535–3540. https://doi.org/10.3892/etm.2016.3811

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tsang KS, Ng CPS, Zhu XL, Wong GKC, Lu G, Ahuja AT, Wong KSL, Ng HK, Poon WS (2017) Phase I/II randomized controlled trial of autologous bone marrow-derived mesenchymal stem cell therapy for chronic stroke. World J Stem Cells 9:133–143. https://doi.org/10.4252/wjsc.v9.i8.133

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ahn SY, Chang YS, Sung SI, Park WS (2018) Mesenchymal Stem Cells for Severe Intraventricular Hemorrhage in Preterm Infants: Phase I Dose-Escalation Clinical Trial. Stem Cells Translational Med 7:847–856. https://doi.org/10.1002/sctm.17-0219

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Taiwan University Hospital (NTUH, 108C101-92). We appreciate research support from the Seventh Core Laboratory of NTUH. We also thank 7 T animal MRI Core Lab of the Neurobiology and Cognitive Science Center, NTU for technical and facility support.

Funding

This research was supported from the Seventh Core Laboratory of National Taiwan University Hospital (NTUH). This work was supported by NTUH (108C101–92).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dar-Ming Lai.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, A.PH., Hsu, YH., Wu, MS. et al. Potential of stem cell therapy in intracerebral hemorrhage. Mol Biol Rep 47, 4671–4680 (2020). https://doi.org/10.1007/s11033-020-05457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05457-9

Keywords

Navigation