Skip to main content

Advertisement

Log in

Effect of bisphenols on telomerase expression and activity in breast cancer cell lines

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA), a monomer of polycarbonates and resins, was shown to induce the expression of telomerase enzyme which has been associated with breast cancer development and progression. However, the effects of BPA analogues, bisphenol F (BPF) and bisphenol S (BPS) on telomere-linked pathway have not been evaluated. Herein, MCF-7 (estrogen receptor (ER)-positive) and MDA-MB-231 (ER-negative) cells were treated with BPA, BPF and BPS ± estrogen receptor inhibitor (ERI), for 24 and/or 48 h. RNA expression and enzymatic activity of telomerase were measured using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and telomeric repeat amplification protocol (TRAP); respectively. Relative telomere length (RTL) was also measured using quantitative PCR. After 24 h, the three bisphenols resulted in a 2–3 folds increase in expression and activity of telomerase in MCF-7 but not in MDA-MB-231 cells, and this increase was prevented upon co-treatment with ERI. The observed increase in the expression and activity of telomerase after 24 h of treatment with bisphenols was associated with differential and modest ER-dependent lengthening in RTL at 48 h. Our results show that telomerase potentially mediates the effects of the three bisphenols in ER-positive breast carcinoma. Hence, further investigation is warranted to elucidate the telomerase-linked pathways that could underlie bisphenol-related effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chen D, Kannan K, Tan H, Zheng Z, Feng YL, Wu Y, Widelka M (2016) Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity-a review. Environ Sci Technol 50(11):5438–5453. https://doi.org/10.1021/acs.est.5b05387

    Article  CAS  PubMed  Google Scholar 

  2. Kelley M, Ngounou Wetie AG, Darie CC (2015) Correlation between bisphenol a exposure and adverse health effects. Mod Chem Appl 3(147):1000147

    Google Scholar 

  3. Mouneimne Y, Nasrallah M, Khoueiry-Zgheib N, Nasreddine L, Nakhoul N, Ismail H, Abiad M, Koleilat L, Tamim H (2017) Bisphenol A urinary level, its correlates, and association with cardiometabolic risks in Lebanese urban adults. Environ Monit Assess 189(10):517. https://doi.org/10.1007/s10661-017-6216-8

    Article  CAS  PubMed  Google Scholar 

  4. vom Saal FS, Akingbemi BT, Belcher SM, Birnbaum LS, Crain DA, Eriksen M, Farabollini F, Guillette LJ Jr, Hauser R, Heindel JJ, Ho SM, Hunt PA, Iguchi T, Jobling S, Kanno J, Keri RA, Knudsen KE, Laufer H, LeBlanc GA, Marcus M, McLachlan JA, Myers JP, Nadal A, Newbold RR, Olea N, Prins GS, Richter CA, Rubin BS, Sonnenschein C, Soto AM, Talsness CE, Vandenbergh JG, Vandenberg LN, Walser-Kuntz DR, Watson CS, Welshons WV, Wetherill Y, Zoeller RT (2007) Chapel Hill bisphenol A expert panel consensus statement: integration of mechanisms, effects in animals and potential to impact human health at current levels of exposure. Reprod Toxicol 24(2):131–138. https://doi.org/10.1016/j.reprotox.2007.07.005

    Article  CAS  Google Scholar 

  5. Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19(4):833–842. https://doi.org/10.1210/me.2004-0486

    Article  CAS  PubMed  Google Scholar 

  6. Fujimoto N, Kitamura S (2004) Effects of environmental estrogenic chemicals on AP1 mediated transcription with estrogen receptors alpha and beta. J Steroid Biochem Mol Biol 88(1):53–59. https://doi.org/10.1016/j.jsbmb.2003.10.006

    Article  CAS  PubMed  Google Scholar 

  7. Rosenmai AK, Dybdahl M, Pedersen M, AvV-L BM, Wedebye EB, Taxvig C, Vinggaard AM (2014) Are structural analogues to bisphenol a safe alternatives? Toxicol Sci 139(1):35–47. https://doi.org/10.1093/toxsci/kfu030

    Article  CAS  PubMed  Google Scholar 

  8. Rochester JR, Bolden AL (2015) Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect 123(7):643–650. https://doi.org/10.1289/ehp.1408989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT (2015) EDC-2: The endocrine society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev 36(6):E1–E150. https://doi.org/10.1210/er.2015-1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song H, Zhang T, Yang P, Li M, Yang Y, Wang Y, Du J, Pan K, Zhang K (2015) Low doses of bisphenol A stimulate the proliferation of breast cancer cells via ERK1/2/ERRgamma signals. Toxicol In Vitro 30(1 Pt B):521–528. https://doi.org/10.1016/j.tiv.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  11. Dong S, Terasaka S, Kiyama R (2011) Bisphenol A induces a rapid activation of Erk1/2 through GPR30 in human breast cancer cells. Environ Pollut 159(1):212–218. https://doi.org/10.1016/j.envpol.2010.09.004

    Article  CAS  PubMed  Google Scholar 

  12. Cao LY, Ren XM, Li CH, Zhang J, Qin WP, Yang Y, Wan B, Guo LH (2017) Bisphenol AF and bisphenol B exert higher estrogenic effects than bisphenol A via G protein-coupled estrogen receptor pathway. Environ Sci Technol 51(19):11423–11430. https://doi.org/10.1021/acs.est.7b03336

    Article  CAS  PubMed  Google Scholar 

  13. Sauer SJ, Tarpley M, Shah I, Save AV, Lyerly HK, Patierno SR, Williams KP, Devi GR (2017) Bisphenol A activates EGFR and ERK promoting proliferation, tumor spheroid formation and resistance to EGFR pathway inhibition in estrogen receptor-negative inflammatory breast cancer cells. Carcinogenesis. https://doi.org/10.1093/carcin/bgx003

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang W, Fang Y, Shi X, Zhang M, Wang X, Tan Y (2012) Effect of bisphenol A on the EGFR-STAT3 pathway in MCF-7 breast cancer cells. Mol Med Rep 5(1):41–47. https://doi.org/10.3892/mmr.2011.583

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi A, Higashino F, Aoyagi M, Kyo S, Nakata T, Noda M, Shindoh M, Kohgo T, Sano H (2004) Bisphenol A from dental polycarbonate crown upregulates the expression of hTERT. J Biomed Mater Res B 71(1):214–221. https://doi.org/10.1002/jbm.b.30085

    Article  CAS  Google Scholar 

  16. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266(5193):2011–2015

    Article  CAS  PubMed  Google Scholar 

  17. Hiyama E, Hiyama K, Yokoyama T, Shay JW (2001) Immunohistochemical detection of telomerase (hTERT) protein in human cancer tissues and a subset of cells in normal tissues. Neoplasia 3(1):17–26. https://doi.org/10.1038/sj/neo/7900134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carey LA, Hedican CA, Henderson GS, Umbricht CB, Dome JS, Varon D, Sukumar S (1998) Careful histological confirmation and microdissection reveal telomerase activity in otherwise telomerase-negative breast cancers. Clin Cancer Res 4(2):435–440

    CAS  PubMed  Google Scholar 

  19. Hoos A, Hepp HH, Kaul S, Ahlert T, Bastert G, Wallwiener D (1998) Telomerase activity correlates with tumor aggressiveness and reflects therapy effect in breast cancer. Int J Cancer 79(1):8–12

    Article  CAS  PubMed  Google Scholar 

  20. Mokbel KM, Parris CN, Ghilchik M, Amerasinghe CN, Newbold RF (2000) Telomerase activity and lymphovascular invasion in breast cancer. Eur J Surg Oncol 26(1):30–33

    Article  CAS  PubMed  Google Scholar 

  21. Sarkar P, Shiizaki K, Yonemoto J, Sone H (2006) Activation of telomerase in BeWo cells by estrogen and 2,3,7,8-tetrachlorodibenzo-p-dioxin in co-operation with c-Myc. Int J Oncol 28(1):43–51

    CAS  PubMed  Google Scholar 

  22. Xu BL, Zhao QZ, Gao XY, Hou GJ (2015) Effect of estradiol and bisphenol A on human hepatoblastoma cell viability and telomerase activity. Braz J Med Biol Res 48(11):1004–1009. https://doi.org/10.1590/1414-431X20154400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roy D, Colerangle JB, Singh KP (1998) Is exposure to environmental or industrial endocrine disrupting estrogen-like chemicals able to cause genomic instability? Front Biosci 3:d913–d921

    Article  CAS  PubMed  Google Scholar 

  24. Awada Z, Nasr R, Akika R, Cahais V, Cuenin C, Zhivagui M, Herceg Z, Ghantous A, Zgheib NK (2019) DNA methylome-wide alterations associated with estrogen receptor-dependent effects of bisphenols in breast cancer. Clin Epigenetics 11(1):138. https://doi.org/10.1186/s13148-019-0725-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sprague BL, Trentham-Dietz A, Hedman CJ, Wang J, Hemming JD, Hampton JM, Buist DS, Aiello Bowles EJ, Sisney GS, Burnside ES (2013) Circulating serum xenoestrogens and mammographic breast density. Breast Cancer Res 15(3):R45. https://doi.org/10.1186/bcr3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhou Q, Miao M, Ran M, Ding L, Bai L, Wu T, Yuan W, Gao E, Wang J, Li G, Li DK (2013) Serum bisphenol-A concentration and sex hormone levels in men. Fertil Steril 100(2):478–482. https://doi.org/10.1016/j.fertnstert.2013.04.017

    Article  CAS  PubMed  Google Scholar 

  27. Padmanabhan V, Siefert K, Ransom S, Johnson T, Pinkerton J, Anderson L, Tao L, Kannan K (2008) Maternal bisphenol-A levels at delivery: a looming problem? J Perinatol 28(4):258–263. https://doi.org/10.1038/sj.jp.7211913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thayer KA, Taylor KW, Garantziotis S, Schurman SH, Kissling GE, Hunt D, Herbert B, Church R, Jankowich R, Churchwell MI, Scheri RC, Birnbaum LS, Bucher JR (2016) Bisphenol A, Bisphenol S, and 4-Hydroxyphenyl 4-Isoprooxyphenylsulfone (BPSIP) in Urine and Blood of Cashiers. Environ Health Perspect 124(4):437–444. https://doi.org/10.1289/ehp.1409427

    Article  CAS  PubMed  Google Scholar 

  29. Ye X, Wong LY, Kramer J, Zhou X, Jia T, Calafat AM (2015) Urinary concentrations of Bisphenol A and three other bisphenols in convenience samples of U.S. Adults during 2000–2014. Environ Sci Technol 49(19):11834–11839. https://doi.org/10.1021/acs.est.5b02135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang T, Xue J, Gao CZ, Qiu RL, Li YX, Li X, Huang MZ, Kannan K (2016) Urinary concentrations of bisphenols and their association with biomarkers of oxidative stress in people living near e-waste recycling facilities in China. Environ Sci Technol 50(7):4045–4053. https://doi.org/10.1021/acs.est.6b00032

    Article  CAS  PubMed  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  32. Mender I, Shay JW (2015) Telomerase repeated amplification protocol (TRAP). Bio Protoc 5(22):e1657

    PubMed  Google Scholar 

  33. Cawthon RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30(10):e47

    Article  PubMed  PubMed Central  Google Scholar 

  34. Miyakoshi T, Miyajima K, Takekoshi S, Osamura RY (2009) The influence of endocrine disrupting chemicals on the proliferation of ERalpha knockdown-human breast cancer cell line MCF-7; new attempts by RNAi technology. Acta Histochem Cytochem 42(2):23–28. https://doi.org/10.1267/ahc.08036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ricupito A, Del PG, Diano N, Grano V, Portaccio M, Marino M, Bolli A, Galluzzo P, Bontempo P, Mita L, Altucci L, Mita DG (2009) Effect of bisphenol A with or without enzyme treatment on the proliferation and viability of MCF-7 cells. Environ Int 35(1):21–26. https://doi.org/10.1016/j.envint.2008.05.011

    Article  CAS  PubMed  Google Scholar 

  36. Song H, Zhang T, Yang P, Li M, Yang Y, Wang Y, Du J, Pan K, Zhang K (2015) Low doses of bisphenol A stimulate the proliferation of breast cancer cells via ERK1/2/ERRgamma signals. Toxicol In Vitro 30:521–528. https://doi.org/10.1016/j.tiv.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  37. Lee HS, Park EJ, Oh JH, Moon G, Hwang MS, Kim SY, Shin MK, Koh YH, Suh JH, Kang HS, Jeon JH, Rhee GS, Hong JH (2014) Bisphenol A exerts estrogenic effects by modulating CDK1/2 and p38 MAP kinase activity. Biosci Biotechnol Biochem 78(8):1371–1375. https://doi.org/10.1080/09168451.2014.921557

    Article  CAS  PubMed  Google Scholar 

  38. Aghajanpour-Mir SM, Zabihi E, Akhavan-Niaki H, Keyhani E, Bagherizadeh I, Biglari S, Behjati F (2016) The genotoxic and cytotoxic effects of bisphenol-A (BPA) in MCF-7 cell line and amniocytes. Int J Mol Cell Med 5(1):19–29

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pisapia L, Del PG, Barba P, Caputo L, Mita L, Viggiano E, Russo GL, Nicolucci C, Rossi S, Bencivenga U, Mita DG, Diano N (2012) Effects of some endocrine disruptors on cell cycle progression and murine dendritic cell differentiation. Gen Comp Endocrinol 178(1):54–63. https://doi.org/10.1016/j.ygcen.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  40. Pfeifer D, Chung YM, Hu MC (2015) Effects of low-dose bisphenol A on DNA damage and proliferation of breast cells: The role of c-myc. Environ Health Perspect 123(12):1271–1279. https://doi.org/10.1289/ehp.1409199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stroheker T, Picard K, Lhuguenot JC, Canivenc-Lavier MC, Chagnon MC (2004) Steroid activities comparison of natural and food wrap compounds in human breast cancer cell lines. Food Chem Toxicol 42(6):887–897. https://doi.org/10.1016/j.fct.2004.01.012

    Article  CAS  PubMed  Google Scholar 

  42. Kim JY, Choi HG, Lee HM, Lee GA, Hwang KA, Choi KC (2017) Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells. J Biomed Res 31(4):358–369. https://doi.org/10.7555/JBR.31.20160162

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee GA, Hwang KA, Choi KC (2017) Inhibitory effects of 3,3'-diindolylmethane on epithelial-mesenchymal transition induced by endocrine disrupting chemicals in cellular and xenograft mouse models of breast cancer. Food Chem Toxicol 109(Pt 1):284–295. https://doi.org/10.1016/j.fct.2017.08.037

    Article  CAS  PubMed  Google Scholar 

  44. Qin XY, Fukuda T, Yang L, Zaha H, Akanuma H, Zeng Q, Yoshinaga J, Sone H (2012) Effects of bisphenol A exposure on the proliferation and senescence of normal human mammary epithelial cells. Cancer Biol Ther 13(5):296–306. https://doi.org/10.4161/cbt.18942

    Article  CAS  PubMed  Google Scholar 

  45. Herz C, Tran HTT, Schlotz N, Michels K, Lamy E (2017) Low-dose levels of bisphenol A inhibit telomerase via ER/GPR30-ERK signalling, impair DNA integrity and reduce cell proliferation in primary PBMC. Sci Rep 7(1):16631. https://doi.org/10.1038/s41598-017-15978-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ribeiro E, Ladeira C, Viegas S (2017) Occupational exposure to bisphenol A (BPA): A reality that still needs to be unveiled. Toxics. https://doi.org/10.3390/toxics5030022

    Article  PubMed  PubMed Central  Google Scholar 

  47. von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27(7):339–344

    Article  Google Scholar 

  48. Macczak A, Cyrkler M, Bukowska B, Michalowicz J (2017) Bisphenol A, bisphenol S, bisphenol F and bisphenol AF induce different oxidative stress and damage in human red blood cells (in vitro study). Toxicol In Vitro 41:143–149. https://doi.org/10.1016/j.tiv.2017.02.018

    Article  CAS  PubMed  Google Scholar 

  49. Bieche I, Nogues C, Paradis V, Olivi M, Bedossa P, Lidereau R, Vidaud M (2000) Quantitation of hTERT gene expression in sporadic breast tumors with a real-time reverse transcription-polymerase chain reaction assay. Clin Cancer Res 6(2):452–459

    CAS  PubMed  Google Scholar 

  50. Collado D (2006) Comparative expression of human telomerase catalytic subunit in normal and tumor breast cell lines. http://www.biotechniques.org/students/COLLADO/paper  

  51. Lymperatou D, Giannopoulou E, Koutras AK, Kalofonos HP (2013) The exposure of breast cancer cells to fulvestrant and tamoxifen modulates cell migration differently. Biomed Res Int 2013:147514. https://doi.org/10.1155/2013/147514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Varma H, Conrad SE (2002) Antiestrogen ICI 182,780 decreases proliferation of insulin-like growth factor I (IGF-I)-treated MCF-7 cells without inhibiting IGF-I signaling. Cancer Res 62(14):3985–3991

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the American University of Beirut Faculty of Medicine Medical Practice Plan grant given to N.K.Z. The authors would like to acknowledge the National Council for Scientific Research of Lebanon (CNRS-L) for granting a doctoral fellowship to Z.A. R.N. is a member of the International Breast Cancer and Nutrition (IBCN). The funding sources were not involved in the study design, data collection and analysis or the manuscript writing and submission.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology and data interpretation (ZA, RN, LH, AG, NK-Z); Experiments (ZA, RA); Supervision (RN, AG, NK-Z); Analysis (ZA, RA, RN, AG, NK-Z); Writing (ZA, NK-Z); Funding acquisition (NK-Z). All authors approved final version of the manuscript.

Corresponding author

Correspondence to Nathalie K. Zgheib.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Where authors are identified as personnel of the International Agency for Research on Cancer / World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer / World Health Organization.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 186 kb)

Supplementary file2 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awada, Z., Nasr, R., Akika, R. et al. Effect of bisphenols on telomerase expression and activity in breast cancer cell lines. Mol Biol Rep 47, 3541–3549 (2020). https://doi.org/10.1007/s11033-020-05444-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05444-0

Keywords

Navigation