Skip to main content

Advertisement

Log in

Targeting signaling pathways of VEGFR1 and VEGFR2 as a potential target in the treatment of breast cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Tumor angiogenesis allows tumor cells to grow and migrate toward the bloodstream and initiate metastasis. The interactions of vascular endothelial growth factors (VEGF) A and B, as the important regulating factors for blood vessel growth, with VEGFR1 and VEGFR2 trigger angiogenesis process. Thus, preventing these interactions led to the effective blockade of VEGF/VEGFRs signaling pathways. In this study, the inhibitory effect of a 23-mer linear peptide (VGB4), which binds to both VEGFR1 and VEGFR2, on VEGF-stimulated Human Umbilical Vein Endothelial Cells (HUVECs) and highly metastatic human breast cancer cell MDA-MB-231 proliferation was examined using MTT assay. To assess the anti-migratory potential of VGB4, HUVECs and also MDA-MB-231 cells wound healing assay was carried out at 48 and 72 h. In addition, downstream signaling pathways of VEGF associated with cell migration and invasion were investigated by quantification of mRNA and protein expression using real-time quantitative PCR and western blot in 4T1 tumor tissues and MDA-MB-231 cells. The results revealed that VGB4 significantly impeded proliferation of HUVECs and MDA-MB-231 cells, in a dose- and time-dependent manner, and migration of HUVECs and MDA-MB-231 cells for a prolonged time. We also observed statistically significant reduction of the transcripts and protein levels of focal adhesion kinase (FAK), Paxillin, matrix metalloproteinase-2 (MMP-2), RAS-related C3 botulinum substrate 1 (Rac1), P21-activated kinase-2 (PAK-2) and Cofilin-1 in VGB4-treated 4T1 tumor tissues compared to controls. The protein levels of phospho-VEGFR1, phospho-VEGFR2, Vimentin, β-catenin and Snail were markedly decreased in both VGB4-treated MDA-MB-231 cells and VGB4-treated 4T1 tumor tissues compared to controls as evidenced by western blotting. These results, in addition to our previous studies, confirm that dual blockage of VEGFR1 and VEGFR2, due to the inactivation of diverse signaling mediators, effectively suppresses tumor growth and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bielenberg DR, Zetter BR (2015) The contribution of angiogenesis to the process of metastasis. Cancer J 21(4):267. https://doi.org/10.1097/PPO.0000000000000138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3):359–369. https://doi.org/10.1016/S0092-8674(00)81280-5

    Article  CAS  PubMed  Google Scholar 

  3. Ivaska J, Heino J (2010) Interplay between cell adhesion and growth factor receptors: from the plasma membrane to the endosomes. Cell Tissue Res 339(1):111. https://doi.org/10.1007/s00441-009-0857-z

    Article  CAS  PubMed  Google Scholar 

  4. Avraham HK, Lee T-H, Koh Y, Kim T-A, Jiang S, Sussman M, Samarel AM, Avraham S (2003) Vascular endothelial growth factor regulates focal adhesion assembly in human brain microvascular endothelial cells through activation of the focal adhesion kinase and related adhesion focal tyrosine kinase. J Biol Chem 278(38):36661–36668. https://doi.org/10.1074/jbc.M301253200

    Article  CAS  PubMed  Google Scholar 

  5. Abedi H, Zachary I (1997) Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 272(24):15442–15451. https://doi.org/10.1074/jbc.272.24.15442

    Article  CAS  PubMed  Google Scholar 

  6. Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: in command and control of cell motility. Nat Rev Mol Cell Biol 6(1):56. https://doi.org/10.1038/nrm1549

    Article  CAS  PubMed  Google Scholar 

  7. Golubovskaya V, Beviglia L, Xu L-H, Earp HS, Craven R, Cance W (2002) Dual inhibition of focal adhesion kinase and epidermal growth factor receptor pathways cooperatively induces death receptor-mediated apoptosis in human breast cancer cells. J Biol Chem 277(41):38978–38987. https://doi.org/10.1074/jbc.M205002200

    Article  CAS  PubMed  Google Scholar 

  8. Sieg DJ, Hauck CR, Ilic D, Klingbeil CK, Schaefer E, Damsky CH, Schlaepfer DD (2000) FAK integrates growth-factor and integrin signals to promote cell migration. Nat Cell Biol 2(5):249. https://doi.org/10.1038/35010517

    Article  CAS  PubMed  Google Scholar 

  9. Mon NN, Ito S, Senga T, Hamaguchi M (2006) FAK signaling in neoplastic disorders: a linkage between inflammation and cancer. Ann N Y Acad Sci 1086(1):199–212. https://doi.org/10.1196/annals.1377.019

    Article  CAS  PubMed  Google Scholar 

  10. Hu Y-L, Lu S, Szeto KW, Sun J, Wang Y, Lasheras JC, Chien S (2014) FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells. Sci Rep 4:6024. https://doi.org/10.1038/srep06024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brown MC, Turner CE (2004) Paxillin: adapting to change. Physiol Rev 84(4):1315–1339. https://doi.org/10.1152/physrev.00002.2004

    Article  CAS  PubMed  Google Scholar 

  12. Kumar R, Gururaj AE, Barnes CJ (2006) p21-activated kinases in cancer. Nat Rev Cancer 6(6):459. https://doi.org/10.1038/nrc1892

    Article  CAS  PubMed  Google Scholar 

  13. Renkema GH, Pulkkinen K, Saksela K (2002) Cdc42/Rac1-mediated activation primes PAK2 for superactivation by tyrosine phosphorylation. Mol Cell Biol 22(19):6719–6725. https://doi.org/10.1128/MCB.22.19.6719-6725.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mira J-P, Benard V, Groffen J, Sanders LC, Knaus UG (2000) Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci 97(1):185–189. https://doi.org/10.1073/pnas.97.1.185

    Article  CAS  PubMed  Google Scholar 

  15. Holm C, Rayala S, Jirström K, Stål O, Kumar R, Landberg G (2006) Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients. J Natl Cancer Inst 98(10):671–680. https://doi.org/10.1093/jnci/djj185

    Article  CAS  PubMed  Google Scholar 

  16. Arias-Romero LE, Chernoff J (2010) p21-activated kinases in Erbb2-positive breast cancer: A new therapeutic target? Small GTPases 1(2):5839–5849. https://doi.org/10.4161/sgtp.1.2.14109

    Article  Google Scholar 

  17. Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285(5429):895–898. https://doi.org/10.1126/science.285.5429.895

    Article  CAS  PubMed  Google Scholar 

  18. Delorme V, Machacek M, DerMardirossian C, Anderson KL, Wittmann T, Hanein D, Waterman-Storer C, Danuser G, Bokoch GM (2007) Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev Cell 13(5):646–662. https://doi.org/10.1016/j.devcel.2007.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rider L, Oladimeji P, Diakonova M (2013) PAK1 regulates breast cancer cell invasion through secretion of matrix metalloproteinases in response to prolactin and three-dimensional collagen IV. Mol Endocrinol 27(7):1048–1064. https://doi.org/10.1210/me.2012-1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poola I, DeWitty RL, Marshalleck JJ, Bhatnagar R, Abraham J, Leffall LD (2005) Identification of MMP-1 as a putative breast cancer predictive marker by global gene expression analysis. Nat Med 11(5):481. https://doi.org/10.1038/nm1243

    Article  CAS  PubMed  Google Scholar 

  21. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12):a005058. https://doi.org/10.1101/cshperspect.a005058

    Article  PubMed  PubMed Central  Google Scholar 

  22. Smith BN, Burton LJ, Henderson V, Randle DD, Morton DJ, Smith BA, Taliaferro-Smith L, Nagappan P, Yates C, Zayzafoon M (2014) Snail promotes epithelial mesenchymal transition in breast cancer cells in part via activation of nuclear ERK2. PLoS ONE 9(8):e104987. https://doi.org/10.1371/journal.pone.0104987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu C-Y, Lin H-H, Tang M-J, Wang Y-K (2015) Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget 6(18):15966

    PubMed  PubMed Central  Google Scholar 

  24. Behelgardi MF, Zahri S, Mashayekhi F, Mansouri K, Asghari SM (2018) A peptide mimicking the binding sites of VEGF-A and VEGF-B inhibits VEGFR-1/-2 driven angiogenesis, tumor growth and metastasis. Sci Rep 8(1):17924. https://doi.org/10.1038/s41598-018-36394-0

    Article  CAS  Google Scholar 

  25. Bauer AT, Bürgers HF, Rabie T, Marti HH (2010) Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement. J Cerebral Blood Flow Metab 30(4):837–848. https://doi.org/10.1038/jcbfm.2009.248

    Article  CAS  Google Scholar 

  26. Lee JH, Shim JW, Choi YJ, Heo K, Yang K (2013) The combination of sorafenib and radiation preferentially inhibits breast cancer stem cells by suppressing HIF-1α expression. Oncol Rep 29(3):917–924. https://doi.org/10.3892/or.2013.2228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13(12):871. https://doi.org/10.1038/nrc3627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yan J-D, Liu Y, Zhang Z-Y, Liu G-Y, Xu J-H, Liu L-Y, Hu Y-M (2015) Expression and prognostic significance of VEGFR-2 in breast cancer. Pathol Res Pract 211(7):539–543. https://doi.org/10.1016/j.prp.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Shi J, Chai K, Ying X, Zhou P (2013) The role of Snail in EMT and tumorigenesis. Curr Cancer Drug Targets 13(9):963–972

    Article  CAS  Google Scholar 

  30. Luo M, Hou L, Li J, Shao S, Huang S, Meng D, Liu L, Feng L, Xia P, Qin T (2016) VEGF/NRP-1axis promotes progression of breast cancer via enhancement of epithelial-mesenchymal transition and activation of NF-κB and β-catenin. Cancer Lett 373(1):1–11. https://doi.org/10.1016/j.canlet.2016.01.010

    Article  CAS  PubMed  Google Scholar 

  31. Ning Q, Liu C, Hou L, Meng M, Zhang X, Luo M, Shao S, Zuo X, Zhao X (2013) Vascular endothelial growth factor receptor-1 activation promotes migration and invasion of breast cancer cells through epithelial-mesenchymal transition. PLoS ONE 8(6):e65217. https://doi.org/10.1371/journal.pone.0065217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gille J, Heidenreich R, Pinter A, Schmitz J, Boehme B, Hicklin DJ, Henschler R, Breier G (2007) Simultaneous blockade of VEGFR-1 and VEGFR-2 activation is necessary to efficiently inhibit experimental melanoma growth and metastasis formation. Int J Cancer 120(9):1899–1908. https://doi.org/10.1002/ijc.22531

    Article  CAS  PubMed  Google Scholar 

  33. Sadremomtaz A, Mansouri K, Alemzadeh G, Safa M, Rastaghi AE, Asghari SM (2018) Dual blockade of VEGFR1 and VEGFR2 by a novel peptide abrogates VEGF-driven angiogenesis, tumor growth, and metastasis through PI3K/AKT and MAPK/ERK1/2 pathway. Biochimica et Biophysica Acta (BBA) 1862(12):2688–2700. https://doi.org/10.1016/j.bbagen.2018.08.013

    Article  CAS  Google Scholar 

  34. Sadremomtaz A, Kobarfard F, Mansouri K, Mirzanejad L, Asghari SM (2018) Suppression of migratory and metastatic pathways via blocking VEGFR1 and VEGFR2. J Recept Signal Trans 38(5–6):432–441. https://doi.org/10.1080/10799893.2019.1567785

    Article  CAS  Google Scholar 

  35. Assareh E, Mehrnejad F, Mansouri K, Rastaghi ARE, Naderi-Manesh H, Asghari SM (2019) A cyclic peptide reproducing the α1 helix of VEGF-B binds to VEGFR-1 and VEGFR-2 and inhibits angiogenesis and tumor growth. Biochem J 476(4):645–663. https://doi.org/10.1042/BCJ20180823

    Article  CAS  PubMed  Google Scholar 

  36. Shiojima I, Walsh K (2002) Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 90(12):1243–1250. https://doi.org/10.1161/01.RES.0000022200.71892.9F

    Article  CAS  PubMed  Google Scholar 

  37. Wang F, Yamauchi M, Muramatsu M, Osawa T, Tsuchida R, Shibuya M (2011) RACK1 regulates VEGF/Flt1-mediated cell migration via activation of a PI3K/Akt pathway. J Biol Chem 286(11):9097–9106. https://doi.org/10.1074/jbc.M110.165605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Butti R, Das S, Gunasekaran VP, Yadav AS, Kumar D, Kundu GC (2018) Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer 17(1):34. https://doi.org/10.1186/s12943-018-0797-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wei Z, Shan Z, Shaikh ZA (2018) Epithelial-mesenchymal transition in breast epithelial cells treated with cadmium and the role of Snail. Toxicol Appl Pharmacol 344:46–55. https://doi.org/10.1016/j.taap.2018.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nagano M, Hoshino D, Koshikawa N, Akizawa T, Seiki M (2012) Turnover of focal adhesions and cancer cell migration. Int J Cell Biol. https://doi.org/10.1155/2012/310616

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sood AK, Coffin JE, Schneider GB, Fletcher MS, DeYoung BR, Gruman LM, Gershenson DM, Schaller MD, Hendrix MJ (2004) Biological significance of focal adhesion kinase in ovarian cancer: role in migration and invasion. Am J Pathol 165(4):1087–1095. https://doi.org/10.1016/S0002-9440(10)63370-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Megison ML, Stewart JE, Nabers HC, Gillory LA, Beierle EA (2013) FAK inhibition decreases cell invasion, migration and metastasis in MYCN amplified neuroblastoma. Clin Exp Metas 30(5):555–568. https://doi.org/10.1007/s10585-012-9560-7

    Article  CAS  Google Scholar 

  43. Wendt MK, Schiemann WP (2009) Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-β signaling and metastasis. Breast Cancer Res 11(5):R68. https://doi.org/10.1186/bcr2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J, Landry J, Huot J (2000) Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem 275(14):10661–10672. https://doi.org/10.1074/jbc.275.14.10661

    Article  CAS  PubMed  Google Scholar 

  45. Le Boeuf F, Houle F, Huot J (2004) Regulation of vascular endothelial growth factor receptor 2-mediated phosphorylation of focal adhesion kinase by heat shock protein 90 and Src kinase activities. J Biol Chem 279(37):39175–39185. https://doi.org/10.1074/jbc.M405493200

    Article  CAS  PubMed  Google Scholar 

  46. Lamalice L, Houle F, Huot J (2006) Phosphorylation of Tyr1214 within VEGFR-2 triggers the recruitment of Nck and activation of Fyn leading to SAPK2/p38 activation and endothelial cell migration in response to VEGF. J Biol Chem 281(45):34009–34020. https://doi.org/10.1074/jbc.M603928200

    Article  CAS  PubMed  Google Scholar 

  47. Zhu X, Zhou W (2015) The emerging regulation of VEGFR-2 in triple-negative breast cancer. Front Endocrinol 6:159. https://doi.org/10.3389/fendo.2015.00159

    Article  Google Scholar 

  48. Wang W, Eddy R, Condeelis J (2007) The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer 7(6):429. https://doi.org/10.1038/nrc2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sawano A, Takahashi T, Yamaguchi S, Shibuya M (1997) The phosphorylated 1169-tyrosine containing region of flt-1 kinase (VEGFR-1) is a major binding site for PLCγ. Biochem Biophys Res Commun 238(2):487–491. https://doi.org/10.1006/bbrc.1997.7327

    Article  CAS  PubMed  Google Scholar 

  50. Takahashi T, Yamaguchi S, Chida K, Shibuya M (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-γ and DNA synthesis in vascular endothelial cells. EMBO J 20(11):2768–2778. https://doi.org/10.1093/emboj/20.11.2768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mohsen Asghari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 987 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzaneh Behelgardi, M., Zahri, S., Gholami Shahvir, Z. et al. Targeting signaling pathways of VEGFR1 and VEGFR2 as a potential target in the treatment of breast cancer. Mol Biol Rep 47, 2061–2071 (2020). https://doi.org/10.1007/s11033-020-05306-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05306-9

Keywords

Navigation