Skip to main content
Log in

Characterization of antifungal metabolites produced by Lactobacillus plantarum and Lactobacillus coryniformis isolated from rice rinsed water

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A recent spike in demand for chemical preservative free food has derived the scientific community to develop natural ways of food preservation. Therefore, bio-preservation could be considered as the great alternative over chemical ones owing to its potential to increase shelf-life and nutritional values of foodstuffs. In the present study, lactic acid producing bacterial species were isolated from rice rinsed water and identified by 16S rRNA gene sequencing as Lactobacillus plantarum BCH-1 (KX388380) and Lactobacillus coryniformis BCH-4 (KX388387). Antifungal metabolites from both Lactobacillus species were extracted by polarity-based solvents in which ethyl acetate showed remarkable antifungal activity against Aspergillus flavus and Aspergillus fumigatus by disc diffusion assay. Different organic acids and fatty acids have been identified by reversed-phase high-performance liquid chromatography (RP-HPLC) and gas chromatography–mass spectrometry (GC–MS) analysis, respectively. Lactic acid and citric acid were the major organic acids found in ethyl acetate fractions of L. plantarum and L. coryniformis, respectively. Similarly, 9,12-otadecadienoic acid (Z,Z)-methyl ester and hexadecanoic acid, methyl ester were the major fatty acids found in n-hexane fractions of L. plantarum and L. coryniformis respectively. Moreover, the isolation of novel antifungal metabolites from locally isolated Lactobacillus species was focused and it was revealed that organic acids are important contributors towards antifungal potential. A novel fatty acid (i.e. 12-hydroxydodecanoic acid) has also been explored and found as potential metabolite against filamentous fungi. Conclusively, various metabolites isolated from non-dairy source showed antifungal activity especially against Aspergillus species. Hence, these metabolites have been considered as a good choice for bio-preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pitt JI (2000) Toxigenic fungi: which are important? Sabouraudia 38(Supplement_1):17–22. https://doi.org/10.1080/mmy.38.s1.17.22

    Article  Google Scholar 

  2. Dalie D, Deschamps A, Richard-Forget F (2010) Lactic acid bacteria–potential for control of mould growth and mycotoxins: a review. Food Control 21(4):370–380. https://doi.org/10.1016/j.foodcont.2009.07.011

    Article  CAS  Google Scholar 

  3. Pitt JI, Hocking AD (2009) Spoilage of stored, processed and preserved foods. In: Pitt JI, Hocking AD (eds) Fungi and food spoilage. Springer, Boston, pp 401–421

    Chapter  Google Scholar 

  4. Vermeulen N, Gánzle MG, Vogel RF (2006) Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis dsm20451t and Lactobacillus plantarum tmw1.468. J Agric Food Chem 54(11):3832–3839. https://doi.org/10.1021/jf052733e

    Article  CAS  PubMed  Google Scholar 

  5. Filtenborg O, Frisvad JC, Thrane U (1996) Moulds in food spoilage. Int J Food Microbiol 33(1):85–102. https://doi.org/10.1016/0168-1605(96)01153-1

    Article  CAS  PubMed  Google Scholar 

  6. Nevarez L, Vasseur V, Debaets S, Barbier G (2010) Use of response surface methodology to optimise environmental stress conditions on Penicillium glabrum, a food spoilage mould. Fungal Biol 114(5–6):490–497. https://doi.org/10.1016/j.funbio.2010.03.011

    Article  PubMed  Google Scholar 

  7. Magnusson J, Ström K, Roos S, Sjögren J, Schnürer J (2003) Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol Lett 219(1):129–135. https://doi.org/10.1016/S0378-1097(02)01207-7

    Article  CAS  PubMed  Google Scholar 

  8. Adebayo C, Aderiye B (2011) Suspected mode of antimycotic action of brevicin sg1 against Candida albicans and Penicillium citrinum. Food Control 22(12):1814–1820. https://doi.org/10.1016/j.foodcont.2011.04.013

    Article  CAS  Google Scholar 

  9. Belguesmia Y, Rabesona H, Mounier J, Pawtowsky A, Le Blay G, Barbier G, Haertlé T, Chobert JM (2014) Characterization of antifungal organic acids produced by Lactobacillus harbinensis k.V9.31 np immobilized in gellan–xanthan beads during batch fermentation. Food Control 36(1):205–211. https://doi.org/10.1016/j.foodcont.2013.08.028

    Article  CAS  Google Scholar 

  10. Black BA, Zannini E, Curtis JM, Gänzle MG (2013) Antifungal hydroxy-fatty acids produced during sourdough fermentation: microbial and enzymatic pathways, and antifungal activity in bread. Appl Environ Microbiol 79(6):1866–1873. https://doi.org/10.1128/AEM.03784-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerez CL, Carbajo MS, Rollán G, Leal T, de FontValdez G (2010) Inhibition of citrus fungal pathogens by using lactic acid bacteria. J Food Sci 75(6):M354–M359. https://doi.org/10.1111/j.1750-3841.2010.01671.x

    Article  CAS  PubMed  Google Scholar 

  12. Kwak MK, Liu R, Kwon JO, Kim MK, Kim AH, Kang SO (2013) Cyclic dipeptides from lactic acid bacteria inhibit proliferation of the influenza a virus. J Microbiol 51(6):836–843. https://doi.org/10.1007/s12275-013-3521-y

    Article  CAS  PubMed  Google Scholar 

  13. Rouse S, Harnett D, Vaughan A, Sinderen Dv (2008) Lactic acid bacteria with potential to eliminate fungal spoilage in foods. J Appl Microbiol 104(3):915–923. https://doi.org/10.1111/j.1365-2672.2007.03619.x

    Article  CAS  PubMed  Google Scholar 

  14. Schnürer J, Magnusson J (2005) Antifungal lactic acid bacteria as biopreservatives. Trends Food Sci Technol 16(1–3):70–78. https://doi.org/10.1016/j.tifs.2004.02.014

    Article  CAS  Google Scholar 

  15. Ikeda DM, Weinert E, Chang KC, McGinn JM, Miller SA, Keliihoomalu C, DuPonte MW (2013) Natural farming: lactic acid bacteria. Sustain Agric 8:3–4

    Google Scholar 

  16. Nikita C, Hemangi D (2012) Isolation, identification and characterization of lactic acid bacteria from dairy sludge sample. J Environ Res Dev 7(1A):1–11

    Google Scholar 

  17. Lotte R, Durand M, Mbeutcha A, Ambrosetti D, Pulcini C, Degand N, Loeffler J, Ruimy R, Amiel J (2014) A rare case of histopathological bladder necrosis associated with Actinobaculum schaalii: the incremental value of an accurate microbiological diagnosis using 16S rDNA sequencing. Anaerobe 26:46–48. https://doi.org/10.1016/j.anaerobe.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  18. Li R, Mock R, Huang Q, Abad J, Hartung J, Kinard G (2008) A reliable and inexpensive method of nucleic acid extraction for the PCR-based detection of diverse plant pathogens. J Virol Methods 154(1–2):48–55. https://doi.org/10.1016/j.jviromet.2008.09.008

    Article  CAS  PubMed  Google Scholar 

  19. Martínez-Absalón S, Rojas-Solís D, Hernández-León R, Prieto-Barajas C, Orozco-Mosqueda MdC, Peña-Cabriales JJ, Sakuda S, Valencia-Cantero E, Santoyo G (2014) Potential use and mode of action of the new strain bacillus thuringiensis um96 for the biological control of the grey mould phytopathogen Botrytis cinerea. Biocontrol Sci Technol 24(12):1349–1362. https://doi.org/10.1080/09583157.2014.940846

    Article  Google Scholar 

  20. Costa GN, Vilas-Bôas GT, Vilas-Boas LA, Miglioranza LH (2011) In silico phylogenetic analysis of lactic acid bacteria and new primer set for identification of Lactobacillus plantarum in food samples. Eur Food Res Technol 233(2):233–241. https://doi.org/10.1007/s00217-011-1508-7

    Article  CAS  Google Scholar 

  21. Ström K, Sjögren J, Broberg A, Schnürer J (2002) Lactobacillus plantarum milab 393 produces the antifungal cyclic dipeptides cyclo (l-phe-l-pro) and cyclo (l-phe-trans-4-oh-l-pro) and 3-phenyllactic acid. Appl Environ Microbiol 68(9):4322–4327. https://doi.org/10.1128/AEM.68.9.4322-4327.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang H, Yan Y, Wang J, Zhang H, Qi W (2012) Production and characterization of antifungal compounds produced by Lactobacillus plantarum imau10014. PLoS ONE 7(1):e29452. https://doi.org/10.1371/journal.pone.0029452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang E, Chang H (2010) Purification of a new antifungal compound produced by Lactobacillus plantarum AF1 isolated from kimchi. Int J Food Microbiol 139(1–2):56–63. https://doi.org/10.1016/j.ijfoodmicro.2010.02.012

    Article  CAS  PubMed  Google Scholar 

  24. Bibi I, Nawaz H, Kamal S, Jilani K, Ruby T, Warsi F (2015) Investigation of catalytic properties of manganese peroxidase (mnp) produced from Agaricus bisporus A21 and its potential application in the biotransformation of xenobiotic compound. J Chem Soc Pak 37(5):859–868

    CAS  Google Scholar 

  25. Broberg A, Jacobsson K, Ström K, Schnürer J (2007) Metabolite profiles of lactic acid bacteria in grass silage. Appl Environ Microbiol 73(17):5547–5552. https://doi.org/10.1128/AEM.02939-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, Amann R (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol 66(11):5053–5065. https://doi.org/10.1128/AEM.66.11.5053-5065.2000

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tohno M, Kobayashi H, Nomura M, Kitahara M, Ohkuma M, Uegaki R, Cai Y (2012) Genotypic and phenotypic characterization of lactic acid bacteria isolated from Italian ryegrass silage. Anim Sci J 83(2):111–120. https://doi.org/10.1111/j.1740-0929.2011.00923.x

    Article  CAS  PubMed  Google Scholar 

  28. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H (2012) Introducing eztaxon-e: a prokaryotic 16 s rrna gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62(3):716–721. https://doi.org/10.1099/ijs.0.038075-0

    Article  CAS  PubMed  Google Scholar 

  29. Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoa sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66(12):5368–5382. https://doi.org/10.1128/AEM.66.12.5368-5382.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nuryana I, Andriani A, Lisdiyanti P (2019) Analysis of organic acids produced by lactic acid bacteria. IOP Conf Ser Earth Environ Sci 251(1):012054. https://doi.org/10.1088/1755-1315/251/1/012054

    Article  Google Scholar 

  31. Dal Bello F, Clarke C, Ryan L, Ulmer H, Schober T, Ström K, Sjögren J, Van Sinderen D, Schnürer J, Arendt E (2007) Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain lactobacillus plantarum fst 1.7. J Cereal Sci 45(3):309–318. https://doi.org/10.1016/j.jcs.2006.09.004

    Article  CAS  Google Scholar 

  32. Schillinger U, Villarreal JV (2010) Inhibition of Penicillium nordicum in MRS medium by lactic acid bacteria isolated from foods. Food Control 21(2):107–111. https://doi.org/10.1016/j.foodcont.2008.11.010

    Article  CAS  Google Scholar 

  33. Reis FS, Stojković D, Soković M, Glamočlija J, Ćirić A, Barros L, Ferreira IC (2012) Chemical characterization of Agaricus bohusii, antioxidant potential and antifungal preserving properties when incorporated in cream cheese. Food Res Int 48(2):620–626. https://doi.org/10.1016/j.foodres.2012.06.013

    Article  CAS  Google Scholar 

  34. Hunter DR, Segel IH (1973) Effect of weak acids on amino acid transport by Penicillium chrysogenum: evidence for a proton or charge gradient as the driving force. J Bacteriol 113(3):1184–1192

    Article  CAS  Google Scholar 

  35. Niku-Paavola ML, Laitila A, Mattila‐Sandholm T, Haikara A (1999) New types of antimicrobial compounds produced by Lactobacillus plantarum. J Appl Microbiol 86(1):29–35. https://doi.org/10.1046/j.1365-2672.1999.00632.x

    Article  CAS  PubMed  Google Scholar 

  36. Atanassova M, Choiset Y, Dalgalarrondo M, Chobert JM, Dousset X, Ivanova I, Haertlé T (2003) Isolation and partial biochemical characterization of a proteinaceous anti-bacteria and anti-yeast compound produced by Lactobacillus paracasei subsp. Paracasei strain m3. Int J Food Microbiol 87(1–2):63–73. https://doi.org/10.1016/S0168-1605(03)00054-0

    Article  CAS  PubMed  Google Scholar 

  37. Axelsson L (1991) Lactobacillus reuteri, a member of the gut bacterial flora: Studies on antagonism, metabolism and genetics, 0531–0531

  38. Piard J, Desmazeaud M (1991) Inhibiting factors produced by lactic acid bacteria. 1. Oxygen metabolites and catabolism end-products. Le lait 171(5):525–541. https://doi.org/10.1051/lait:1991541

    Article  Google Scholar 

  39. Stratford M, Eklund T (2003) Organic acids and esters. Food Preserv. Springer, Boston, pp 48–84. https://doi.org/10.1007/978-0-387-30042-9_4

    Chapter  Google Scholar 

  40. Freese E, Sheu CW, Galliers E (1973) Function of lipophilic acids as antimicrobial food additives. Nature 241(5388):321–325. https://doi.org/10.1038/241321a0

    Article  CAS  PubMed  Google Scholar 

  41. Hassan R, El-Kadi S, Sand M (2015) Effect of some organic acids on some fungal growth and their toxins production. Int J Adv Biol 2(1):1–11

    CAS  Google Scholar 

  42. Zalán Z, Hudáček J, Štětina J, Chumchalová J, Halász A (2010) Production of organic acids by lactobacillus strains in three different media. Eur Food Res Technol 230(3):395. https://doi.org/10.1007/s00217-009-1179-9

    Article  CAS  Google Scholar 

  43. Axel C, Brosnan B, Zannini E, Peyer LC, Furey A, Coffey A, Arendt EK (2016) Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough. Appl Microbiol Biotechnol 100(4):1701–1711. https://doi.org/10.1007/s00253-015-7051-x

    Article  CAS  PubMed  Google Scholar 

  44. Di Biase M, Lavermicocca P, Lonigro SL, Valerio F (2014) Lactobacillus brevis-based bioingredient inhibits Aspergillus niger growth on pan bread. Ital J Agron 9:146–151

    Article  Google Scholar 

  45. Ryu EH, Yang EJ, Woo ER, Chang HC (2014) Purification and characterization of antifungal compounds from Lactobacillus plantarum hd1 isolated from kimchi. Food Microbiol 41:19–26. https://doi.org/10.1016/j.fm.2014.01.011

    Article  CAS  PubMed  Google Scholar 

  46. Le Lay C, Coton E, Le Blay G, Chobert JM, Haertlé T, Choiset Y, Van Long NN, Meslet-Cladiere L, Mounier J (2016a) Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria. Int J Food Microbiol 239:79–85. https://doi.org/10.1016/j.ijfoodmicro.2016.06.020

    Article  CAS  PubMed  Google Scholar 

  47. Le Lay C, Mounier J, Vasseur V, Weill A, Le Blay G, Barbier G, Coton E (2016) In vitro and in situ screening of lactic acid bacteria and propionibacteria antifungal activities against bakery product spoilage molds. Food Control 60:247–255. https://doi.org/10.1016/j.foodcont.2015.07.034

    Article  CAS  Google Scholar 

  48. Anyasi TA, Jideani AI, Mchau GR (2015) Effect of organic acid pretreatment on some physical, functional and antioxidant properties of flour obtained from three unripe banana cultivars. Food Chem 172:515–522. https://doi.org/10.1016/j.foodchem.2014.09.120

    Article  CAS  PubMed  Google Scholar 

  49. Quitmann H, Fan R, Czermak P (2013) Acidic organic compounds in beverage, food, and feed production. Biotechnol Food Feed Addit. Springer, Berlin, pp 91–141

    Chapter  Google Scholar 

  50. Sjögren J, Magnusson J, Broberg A, Schnürer J, Kenne L (2003) Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum milab 14. Appl Environ Microbiol 69(12):7554–7557. https://doi.org/10.1128/AEM.69.12.7554-7557.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ndagano D, Lamoureux T, Dortu C, Vandermoten S, Thonart P (2011) Antifungal activity of 2 lactic acid bacteria of the Weissella genus isolated from food. J Food Sci 76(6):M305–M311. https://doi.org/10.1111/j.1750-3841.2011.02257.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Higher Education Commission (HEC) Islamabad, Government of Pakistan for financial support. The work was supported by HEC [21-432/SRGP/H&D/2014].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Mustafa.

Ethics declarations

Conflict of interest

The authors declared no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukhari, S.A., Salman, M., Numan, M. et al. Characterization of antifungal metabolites produced by Lactobacillus plantarum and Lactobacillus coryniformis isolated from rice rinsed water. Mol Biol Rep 47, 1871–1881 (2020). https://doi.org/10.1007/s11033-020-05281-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05281-1

Keywords

Navigation