Skip to main content
Log in

Construction of a Pichia pastoris strain efficiently producing recombinant human granulocyte-colony stimulating factor (rhG-CSF) and study of its biological activity on bone marrow cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 18 February 2020

This article has been updated

Abstract

Non-glycosylated, recombinant human granulocyte colony-stimulating factor (rhG-CSF), produced by Escherichia coli (filgrastim, leukostim) is widely used to treat a number of serious human diseases and aids in the recovery post bone marrow transplantation. Although glycosylation is not required for the manifestation of the biological activity of G-CSF, a number of studies have shown that the carbohydrate residue significantly increases the physicochemical stability of the G-CSF molecule. Therefore, the aim of the present study was to design a Pichia pastoris strain capable of producing glycosylated rhG-CSF, and to study its effects on rat bone marrow cells. The nucleotide sequence of the rhG-CSF gene has been optimized for expression in P. pastoris, synthesized, cloned into the pPICZαA vector and expressed under the control of the AOX promoter in P. pastoris X33. One of the selected clones secreting rhG-CSF, produced 100–120 mg/l of rhG-CSF three days post-induction with methanol. The recombinant cytokine was purified using two-step, ion-exchange chromatography. The final yield of purified G-CSF was 35 mg/L of culture medium. The biological activity of rhG-CSF was examined in rat bone marrow cells. The P. pastoris strain was designed to produce relatively high levels of rhG-CSF. The rhG-CSF protein had a strong stimulating effect on the growth of rat bone marrow cells, which was comparable to that of the commercial drug leukostim, but showed a more persistent effect on granulocyte cells and monocyte sprouts, enabling the enhanced maintenance of the viability of the cells into the 4th day of incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 18 February 2020

    The original publication has been updated. The acknowledgment was omitted from the original article and is published below.

  • 18 February 2020

    The original publication has been updated. The acknowledgment was omitted from the original article and is published below.

References

  1. Nicola NA, Metcalf D, Matsumoto M, Johnson GR (1983) Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. Identification as granulocyte colony-stimulating factor. Journal of Biological Chemistry 258(14):9017–9023

    CAS  PubMed  Google Scholar 

  2. Tsai ST, Chu SC, Liu SH, Pang CY, Hou TW, Lin SZ, Chen SY (2017) Neuroprotection of Granulocyte Colony-Stimulating Factor for Early Stage Parkinson’s Disease. Cell Transplantation 26(3):409–416

    Article  PubMed  PubMed Central  Google Scholar 

  3. Prakash A, Medhi B, Chopra K (2013) Granulocyte colony stimulating factor (GCSF) improves memory and neurobehavior in an amyloid-β induced experimental model of Alzheimer’s disease. Pharmacology Biochemistry and Behavior 110:46–57

    Article  CAS  Google Scholar 

  4. Lu C-Z, Xiao B-G (2006) G-CSF and neuroprotection: a therapeutic perspective in cerebral ischaemia. Biochemical society transactions 34(6):1327–1333

    Article  CAS  PubMed  Google Scholar 

  5. Takano H, Qin Y, Hasegawa H, Ueda K, Niitsuma Y, Ohtsuka M, Komuro I (2006) Effects of G-CSF on left ventricular remodeling and heart failure after acute myocardial infarction. Journal of molecular medicine (Berlin, Germany) 84(3):185–193

    Article  Google Scholar 

  6. Smith MA, Smith JG (2002) Clinical experience with the use of rhG-CSF in secondary autoimmune neutropenia. Clinical & Laboratory Haematology 24(2):93–97

    Article  CAS  Google Scholar 

  7. Welte K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G (1996) Filgrastim (r-metHuG-CSF): the first 10 years. Blood 88(6):1907–1929

    Article  CAS  PubMed  Google Scholar 

  8. Ono M (1994) Physicochemical and biochemical characteristics of glycosylated recombinant human granulocyte colony-stimulating factor (lenograstim). European Journal of Cancer 30A(3):7–11

    Google Scholar 

  9. Oh-eda M, Hasegawa M, Hattori К, Kuboniwa H, Kojima T, Orita T, Tomonou K, Yamazaki T, Ochi N (1990) O-linked sugar chain of human granulocyte colony-stimulating factor protects it against polymerization and denaturation allowing it to retain its biological activity. Journal of BiologicalChemistry 265(20):11432–11435

    CAS  Google Scholar 

  10. Ono M, Oh-eda M, Kamachi S, Kato M, Endo Y, Ochi N (1992) Structure of G-CSF: significance of the sugar chain. Journal of Nutritional Science and Vitaminology 38:337–340

    Article  Google Scholar 

  11. Carter CR, Whitmore KM, Thorpe R (2004) The significance of carbohydrates on G-CSF: differential sensitivity of G-CSFs to human neutrophil elastase degradation. Journal of Leukocyte Biology 75(3):515–522

    Article  CAS  PubMed  Google Scholar 

  12. Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Biotechnology 11(8):905–910

    CAS  PubMed  Google Scholar 

  13. Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews 24(1):45–66

    Article  CAS  PubMed  Google Scholar 

  14. Lund AH, Duch M, Pedersen FS (1996) Increased cloning efficiency by temperature-cycle ligation. NucleicAcidsResearch 24(4):800–801

    CAS  Google Scholar 

  15. Bae CS, Yang DS, Lee J, Park Y-H (1999) Improved process for production of recombinant yeast-derived monomeric human G-CSF. Applied Microbiology and Biotechnology 52(3):338–344

    Article  CAS  PubMed  Google Scholar 

  16. Bahrami A, Shojaosadati SA, Khalilzadeh R, Mohammadian J, Farahani EV, Masoumian MR (2009) Prevention of human granulocyte colony-stimulating factor protein aggregation in recombinant Pichia pastoris fed-batch fermentation using additives. Biotechnology and Applied Biochemistry 52(2):141–148

    Article  CAS  PubMed  Google Scholar 

  17. Apte-Deshpande A, Somani S, Mandal G, Soorapaneni S, Padmanabhan S (2009) Over expression and analysis of O-glycosylated recombinant human granulocyte colony stimulating factor in Pichia pastoris using Agilent 2100 Bioanalyzer. Journal of Biotechnology 143(1):44–50

    Article  CAS  PubMed  Google Scholar 

  18. Li R, Xie C, Zhang Y, Li B, Donelan W, Li S, Han S, Wang X, Cui T, Tang D (2014) Expression of recombinant human IL-4 in Pichia pastoris and relationship between its glycosylation and biological activity. Protein Expression and Purification 96:1–7

    Article  CAS  PubMed  Google Scholar 

  19. Zhu W, Gong G, Pan J, Han S, Zhang W, Hu Y, Xie L (2018) High level expression and purification of recombinant human serum albumin in Pichia pastoris. Protein Expression and Purification 147:61–68

    Article  CAS  PubMed  Google Scholar 

  20. Maity N, Thawani A, Sharma A, Gautam A, Mishra S, Sahai V (2016) Expression and control of codon-optimized granulocyte colony-stimulating factor in Pichia pastoris. Applied Biochemistry and Biotechnology 178(1):159–172

    Article  CAS  PubMed  Google Scholar 

  21. Lasnik MA, Porekar VG, Stalc A (2001) Human granulocyte colony stimulating factor (hG-CSF) expressed by methylotrophic yeast pichia pastoris. PflügersArchiv European Journal of Physiology 442(6 Suppl. 1):R184–R186

    Article  CAS  PubMed  Google Scholar 

  22. Saeedinia A, Shamsara M, Bahrami A, Zeinoddini M, Naseeri-Khalili MA, Mohammadi R, Sabet NM, Sami H (2008) Heterologous expression of human GCSF in Pichia pastoris. Biotechnology 7(3):569–573

    Article  CAS  Google Scholar 

  23. Kateja N, Agarwal H, Hebbi V, Rathore AS (2017) Integrated continuous processing of proteins expressed as inclusion bodies: GCSF as a case study. Biotechnology Progress 33(4):998–1009

    Article  CAS  PubMed  Google Scholar 

  24. Querol S, Cancelas JA, Amat L, Capmany G, Garcia J (1999) Effect of glycosylation of recombinant human granulocytic colony-stimulating factor on expansion cultures of umbilical cord blood CD34+ cells. Haematologica 84(6):493–498

    CAS  PubMed  Google Scholar 

  25. Nissen C, dalle Carbonare Y, Moser Y (1994) In vitro comparison of the biological potency of glycosylated versus non-glycosylated rG-CSF. Drug Investigation 7(6):346–352

    Article  CAS  Google Scholar 

  26. Pedrazzoli P, Gibelli N, Pavesi L, Preti P, Piolini M, Bertolini F, Robustellidella Cuna G (1996) Effects of glycosylated and non-glycosylated G-CSFs, alone and in combination with other cytokines, on the growth of human progenitor cells. AnticancerResearch 16(4A):1781–1785

    CAS  Google Scholar 

  27. Ria R, Gasparre T, Mangialardi G, Bruno A, Iodice G, Vacca A, Dammacco F (2010) Comparison between filgrastim and lenograstim plus chemotherapy for mobilization of PBPCs. Bone Marrow Transplantation 45(2):277–281

    Article  CAS  PubMed  Google Scholar 

  28. Ribeiro D, Veldwijk MR, Benner A, Laufs S, Wenz F, Ho AD, Fruehauf S (2007) Differences in functional activity and antigen expression of granulocytes primed in vivo with filgrastim, lenograstim, or pegfilgrastim. Transfusion 47(6):969–980

    Article  CAS  PubMed  Google Scholar 

  29. Ataergin S, Arpaci F, Turan M, Solchaga L, Cetin T, Ozturk M, Ozet A, Komurcu S, Ozturk B (2008) Reduced dose of lenograstim is as efficacious asstandard dose of filgrastim for peripheral blood stem cell mobilization and transplantation: a randomized study in patients undergoing autologous peripheral stem cell transplantation. American Journal of Hematology 83(8):644–648

    Article  CAS  PubMed  Google Scholar 

  30. Hüttmann A, Schirsafi K, Seeber S, Bojko P (2005) Comparison of lenograstim and filgrastim: effects on blood cell recovery after high-dose chemotherapy and autologous peripheral blood stem cell transplantation. Journal of Cancer Research and Clinical Oncology 131(3):152–156

    Article  PubMed  Google Scholar 

  31. de Arriba F, Lozano ML, Ortuño F, Heras I, Moraleda JM, Vicente V (1997) Prospective randomized study comparing the efficacy of bioequivalent doses of glycosylated and nonglycosylatedrG-CSF for mobilizing peripheral blood progenitor cells. British Journal of Haematology 96(2):418–420

    Article  PubMed  Google Scholar 

  32. Höglund M, Smedmyr B, Bengtsson M, Tötterman TH, Cour-Chabernaud V, Yver A, Simonsson B (1997) Mobilization of CD34+ cells by glycosylated and nonglycosylated G-CSF in healthy volunteers – a comparative study. European Journal of Haematology 59(3):177–183

    Article  PubMed  Google Scholar 

  33. Kopf B, De Giorgi U, Vertogen B, Monti G, Molinari A, Turci D, Dazzi C, Leoni M, Tienghi A, Cariello A, Argnani M, Frassineti L, Scarpi E, Rosti G, Marangolo M (2006) A randomized study comparing filgrastim versus lenograstim versus molgramostim plus chemotherapy for peripheral blood progenitor cell mobilization. Bone Marrow Transplantation 38(6):407–412

    Article  CAS  PubMed  Google Scholar 

  34. Bönig H, Silbermann S, Weller S, Kirschke R, Körholz D, Janssen G, Göbel U, Nürnberger W (2001) Glycosylated vs non-glycosylated granulocyte colony-stimulating factor (G-CSF) – results of a prospective randomisedmonocentre study. Bone Marrow Transplantation 28(3):259–264

    Article  PubMed  Google Scholar 

  35. Martino M, Console G, Irrera G, Callea I, Condemi A, Dattola A, Messina G, Pontari A, Pucci G, Furlò G, Bresolin G, Iacopino P, Morabito F (2005) Harvesting peripheral blood progenitor cells from healthy donors: retrospective comparison of filgrastim and lenograstim. Journal of Clinical Apheresis 20(3):129–136

    Article  PubMed  Google Scholar 

  36. Lefrère F, Bernard M, Audat F, Cavazzana-Calvo M, Belanger C, Hermine O, Arnulf B, Buzyn A, Varet B (1999) Comparison of lenograstim vs filgrastim administration following chemotherapy for peripheral blood stem cell (PBSC) collection: a retrospective study of 126 patients. Leukemia & Lymphoma 35(5–6):501–505

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Beklemishev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pykhtina, M.B., Romanov, V.P., Miroshnichenko, S.M. et al. Construction of a Pichia pastoris strain efficiently producing recombinant human granulocyte-colony stimulating factor (rhG-CSF) and study of its biological activity on bone marrow cells. Mol Biol Rep 47, 607–620 (2020). https://doi.org/10.1007/s11033-019-05169-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05169-9

Keywords

Navigation