Skip to main content

Advertisement

Log in

Effects of different 2A peptides on transgene expression mediated by tricistronic vectors in transfected CHO cells

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Multicistronic vectors can increase transgene expression and decrease the imbalance of gene expression in the Chinese hamster ovary (CHO) cell expression system. Small, self-cleaving 2A peptides have a high cleavage efficiency and are essential for constructing high-expression multicistronic vectors. In this study, we investigated the effects of two different 2A peptides on transgene expression in CHO cells via their mediating action on tricistronic vectors. The enhanced green fluorescent protein (eGFP) and red fluorescent protein (RFP) genes were linked by the porcine teschovirus-1 (P2A) and Thosea asigna virus (T2A) peptides in a multicistronic vector. We transfected CHO cells with these vectors and screened for the presence of blasticidin-resistant colonies. Flow cytometry and real-time quantitative PCR (qPCR) were used to detect the expression levels of eGFP and RFP and the copy numbers of stably transfected cells. The results showed that P2A could enhance eGFP and RFP expression by 1.48- and 1.47-fold, respectively, compared to T2A. The expression levels of the genes were not proportional to their copy numbers. In conclusion, we found that P2A can effectively drive transgene expression in CHO cells and a potent 2A peptide can be used for recombinant protein production in the CHO cell system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao CP, Guo X, Chen SJ, Li CZ, Yang Y, Zhang JH, Chen SN, Jia YL, Wang TY (2017) Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells. Sci Rep 7:42805

    Article  CAS  Google Scholar 

  2. Wang W, Guo X, Li YM, Wang XY, Yang XJ, Wang YF, Wang TY (2018) Enhanced transgene expression using cis-acting elements combined with the EF1 promoter in a mammalian expression system. Eur J Pharm Sci 123:539–545

    Article  CAS  Google Scholar 

  3. Helene Faustrup K, Deniz BH, Lewis NE, Betenbaugh MJ (2013) The emerging CHO systems biology era: harnessing the ‘omics revolution for biotechnology. Curr Opin Biotechnol 24:1102–1107

    Article  Google Scholar 

  4. Jee Yon K, Yeon-Gu K, Gyun Min L (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930

    Article  Google Scholar 

  5. Bayat H, Hossienzadeh S, Pourmaleki E, Ahani R, Rahimpour A (2018) Evaluation of different vector design strategies for the expression of recombinant monoclonal antibody in CHO cells. Prep Biochem Biotechnol. https://doi.org/10.1080/10826068.2017.1421966

    Article  PubMed  Google Scholar 

  6. Morrow MP, Pankhong P, Weiner DB (2009) Design and characterization of a plasmid vector system capable of rapid generation of antibodies of multiple isotypes and specificities. Biotechnol Lett 31:13–22

    Article  CAS  Google Scholar 

  7. Davies SL, O’Callaghan PM, Mcleod J, Pybus LP, Sung YH, Rance J, Wilkinson SJ, Racher AJ, Young RJ, James DC (2011) Impact of gene vector design on the control of recombinant monoclonal antibody production by Chinese hamster ovary cells. Biotechnol Prog 27:1689–1699

    Article  CAS  Google Scholar 

  8. Ho SC, Bardor M, Li B, Lee JJ, Song Z, Tong YW, Goh LT, Yang Y (2013) Comparison of internal ribosome entry site (IRES) and Furin-2A (F2A) for monoclonal antibody expression level and quality in CHO cells. PLoS ONE 8:e63247

    Article  CAS  Google Scholar 

  9. Harries M, Phillipps N, Anderson R, Prentice G, Collins M (2015) Comparison of bicistronic retroviral vectors containing internal ribosome entry sites (IRES) using expression of human interleukin-12 (IL-12) as a readout. J Gene Med 2:243–249

    Article  Google Scholar 

  10. Shatsky IN, Dmitriev SE, Terenin IM, Andreev DE (2010) Cap- and IRES-independent scanning mechanism of translation initiation as an alternative to the concept of cellular IRESs. Mol Cells 30:285–293

    Article  CAS  Google Scholar 

  11. Cheng XC, Wang JP, Yang XY, Wang BS, Kang FB (2014) Tricistronic hepatitis C virus subgenomic replicon expressing double transgenes. World J Gastroenterol 20:18284–18295

    Article  CAS  Google Scholar 

  12. Nakajima K, Ikenaka K, Nakahira K, Morita N, Mikoshiba K (1993) An improved retroviral vector for assaying promoter activity. FEBS Lett 315:129–133

    Article  CAS  Google Scholar 

  13. Mardanova ES, Beletsky AV, Ravin NV (2016) Internal initiation of translation of mRNA in the methylotrophic yeast Hansenula polymorpha. Biochemistry 81:521–529

    CAS  PubMed  Google Scholar 

  14. Chinnasamy D, Milsom MD, Shaffer J, Neuenfeldt J, Shaaban AF, Margison GP, Fairbairn LJ, Chinnasamy N (2006) Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI. Virol J 3:14

    Article  Google Scholar 

  15. Jianmin F, Jing-Jing Q, Saili Y, Harding TC, Guang Huan T, Melinda VR, Karin J (2005) Stable antibody expression at therapeutic levels using the 2A peptide. Nat Biotechnol 23:584

    Article  Google Scholar 

  16. Kim JH, Lee SR, Li LH, Park HJ, Park JH, Lee KY, Kim MK, Shin BA, Choi SY, Thiel V (2011) High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines Zebrafish and mice. PLoS ONE 6:e18556

    Article  CAS  Google Scholar 

  17. Chng J, Wang T, Nian R, Lau A, Hoi KM, Ho SC, Gagnon P, Bi X, Yang Y (2015) Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells. MAbs 7:403–412

    Article  CAS  Google Scholar 

  18. Atema E, Oers KV, Verhulst S (2013) GAPDH as a control gene to estimate genome copy number in great tits, with cross-amplification in blue tits. Ardea 101:49–54

    Article  Google Scholar 

  19. Doronina VA, Wu C, Felipe PD, Sachs MS, Ryan MD, Brown JD (2008) Site-specific release of nascent chains from ribosomes at a sense codon. Mol Cell Biol 28:4227–4239

    Article  CAS  Google Scholar 

  20. Robinson MP, Ke N, Lobstein J, Peterson C, Szkodny A, Mansell TJ, Tuckey C, Riggs PD, Colussi PA, Noren CJ (2015) Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat Commun 6:8072

    Article  CAS  Google Scholar 

  21. Liu Z, Chen O, Wall JBJ, Zheng M, Zhou Y, Wang L, Vaseghi HR, Qian L, Liu J (2017) Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep 7:2193

    Article  CAS  Google Scholar 

  22. Ho SCL, Yap MGS, Yuansheng Y (2010) Evaluating post-transcriptional regulatory elements for enhancing transient gene expression levels in CHO K1 and HEK293 cells. Protein Expr Purif 69:9–15

    Article  Google Scholar 

  23. Harraghy N, Regamey A, Girod PA, Mermod N (2011) Identification of a potent MAR element from the mouse genome and assessment of its activity in stable and transient transfections. J Biotechnol 154:11–20

    Article  CAS  Google Scholar 

  24. Izidoro MA, Gouvea IE, Santos JAN, Assis DM, Oliveira V, Judice WAS, Juliano MA, Lindberg I, Juliano L (2009) A study of human furin specificity using synthetic peptides derived from natural substrates, and effects of potassium ions. Arch Biochem Biophys 487:105–114

    Article  CAS  Google Scholar 

  25. Xu DH, Wang XY, Jia YL, Wang TY, Tian ZW, Feng X, Zhang YN (2018) SV40 intron, a potent strong intron element that effectively increases transgene expression in transfected Chinese hamster ovary cells. J Cell Mol Med 22:2231–2239

    Article  CAS  Google Scholar 

  26. Chen SJ, Wang W, Zhang FY, Jia YL, Wang XY, Guo X, Chen SN, Gao JH, Wang TY (2017) A chimeric HS4 insulator-scaffold attachment region enhances transgene expression in transfected Chinese hamster ovary cells. FEBS Open Bio 7:2021–2030

    Article  CAS  Google Scholar 

  27. Minskaia E, Ryan MD (2013) Protein coexpression using FMDV 2A: effect of “Linker” residues. Biomed Res Int. https://doi.org/10.1155/2013/291730

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grants from the National Natural Science Foundation of China (No. 81673337) and the Grants from the Key Scientific Research Projects in Universities of Henan Province (No. 19A350008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-yun Wang.

Ethics declarations

Conflict of interest

All authors have no conflict of interest regarding this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ym., Wang, M., Wang, Ty. et al. Effects of different 2A peptides on transgene expression mediated by tricistronic vectors in transfected CHO cells. Mol Biol Rep 47, 469–475 (2020). https://doi.org/10.1007/s11033-019-05153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05153-3

Keywords

Navigation