Skip to main content

Advertisement

Log in

Isolation and characterization of eleven novel microsatellite markers for fine-scale population genetic analyses of Gammarus pulex (Crustacea: Amphipoda)

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The freshwater amphipod species Gammarus pulex (Linnaeus, 1758) is widespread across Europe and Asia and is able to live in a broad range of environmental conditions. Yet, it is of great interest to which degree it is able to tolerate and adapt to the current rapid anthropogenic environmental changes affecting its habitat, such as pollution, changes in river morphology, and invasions of alien gammarid species. Microsatellite primers for genetic population studies with G. pulex have been developed but due to the existence of several genetically different lineages within the species, the application of these primers is not always successful. In order to investigate the impacts of anthropogenic environmental changes on the spatio-genetic patterns of G. pulex lineage E in streams in the Saale river catchment in Germany, we designed eleven novel polymorphic microsatellites for this lineage using a high-throughput sequencing approach. These microsatellites enabled highly specific characterization of three closely related populations. The results show genetically distinct populations reflected by both a principal coordinates analysis and an analysis of molecular variance. Several of the newly designed microsatellite primers also enabled successful cross-amplification of the respective microsatellites in specimens of G. pulex lineage C, while only two microsatellites were amplified successfully and showed polymorphisms for all of the analyzed specimens of G. fossarum Koch, 1836. The microsatellites identified here are suitable for future assessments of micro-evolutionary dynamics of G. pulex from central Germany.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Pinkster S (1972) On members of the Gammarus pulex-group (Crustacea-Amphipoda) from Western Europe. Bijdr Dierk 42:164–191

    Article  Google Scholar 

  2. Altermatt F, Alther R, Fišer C, Švara V (2019) Amphipoda: die Flohkrebse der Schweiz, Fauna Helvetica 32. Info Fauna CSCF & SEG, Neuchatel

    Google Scholar 

  3. MacNeil C, Dick JTA, Elwood RW (1997) The trophic ecology of freshwater Gammarus spp. (Crustacea: Amphipoda): problems and perspectives concerning the functional feeding group concept. Biol Rev 72:349–364

    Article  Google Scholar 

  4. Foucreau N, Puijalon S, Hervant F, Piscart C (2013) Effect of leaf litter characteristics on leaf conditioning and on consumption by Gammarus pulex. Freshw Biol 58:1672–1681. https://doi.org/10.1111/fwb.12158

    Article  Google Scholar 

  5. Dick JT (1995) The cannibalistic behaviour of two Gammarus species (Crustacea: Amphipoda). J Zool 236:697–706. https://doi.org/10.1111/j.1469-7998.1995.tb02740.x

    Article  Google Scholar 

  6. Nyman AM, Hintermeister A, Schirmer K, Ashauer R (2013) The insecticide imidacloprid causes mortality of the freshwater amphipod Gammarus pulex by interfering with feeding behavior. PLoS ONE 8:e62472. https://doi.org/10.1371/journal.pone.0062472

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ashauer R, Hintermeister A, Potthoff E, Escher BI (2011) Acute toxicity of organic chemicals to Gammarus pulex correlates with sensitivity of Daphnia magna across most modes of action. Aquat Toxicol 103:38–45. https://doi.org/10.1016/j.aquatox.2011.02.002

    Article  CAS  PubMed  Google Scholar 

  8. Russo R, Becker JM, Liess M (2018) Sequential exposure to low levels of pesticides and temperature stress increase toxicological sensitivity of crustaceans. Sci Total Environ 610–611:563–569. https://doi.org/10.1016/j.scitotenv.2017.08.073

    Article  CAS  PubMed  Google Scholar 

  9. Inostroza PA, Vera-Escalona I, Wicht AJ et al (2016) Anthropogenic stressors shape genetic structure: insights from a model freshwater population along a land use gradient. Environ Sci Technol 50:11346–11356. https://doi.org/10.1021/acs.est.6b04629

    Article  CAS  PubMed  Google Scholar 

  10. MacNeil C, Platvoet D (2005) The predatory impact of the freshwater invader Dikerogammarus villosus on native Gammarus pulex (Crustacea: Amphipoda); influences of differential microdistribution and food resources. J Zool 267:31–38. https://doi.org/10.1017/S0952836905007351

    Article  Google Scholar 

  11. Weiss M, Leese F (2016) Widely distributed and regionally isolated! Drivers of genetic structure in Gammarus fossarum in a human-impacted landscape. BMC Evol Biol 16:153. https://doi.org/10.1186/s12862-016-0723-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rewicz T, Wattier R, Grabowski M et al (2015) Out of the Black Sea: phylogeography of the invasive killer shrimp Dikerogammarus villosus across Europe. PLoS ONE 10:e0118121. https://doi.org/10.1371/journal.pone.0118121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gergs R, Gemmer I, Koester M et al (2019) No evidence for a genetic impoverishment of the indigenous amphipod Gammarus roeselii (Gervais, 1835) due to the invasion of Dikerogammarus villosus (Sowinsky, 1894) in Lake Constance. Hydrobiologia 829:189–204. https://doi.org/10.1007/s10750-018-3831-5

    Article  Google Scholar 

  14. Gergs R, Rothhaupt KO, Behrmann-Godel J (2010) Characterisation of polymorphic microsatellite markers for the freshwater amphipod Gammarus pulex L. (Crustacea: Amphipoda). Mol Ecol Resour 10:232–236. https://doi.org/10.1111/j.1755-0998.2009.02796.x

    Article  CAS  PubMed  Google Scholar 

  15. Danancher D, Cellot B, Dolédec S, Reynaud D (2009) Isolation and characterization of the first eight microsatellite loci in Gammarus fossarum (Crustacea, Amphipoda) and cross-amplification in Gammarus pulex and Gammarus orinos. Mol Ecol Resour 9:1418–1421. https://doi.org/10.1111/j.1755-0998.2009.02685.x

    Article  PubMed  Google Scholar 

  16. Grabner DS, Weigand AM, Leese F et al (2015) Invaders, natives and their enemies: distribution patterns of amphipods and their microsporidian parasites in the Ruhr Metropolis, Germany. Parasit Vectors 8:419. https://doi.org/10.1186/s13071-015-1036-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lagrue C, Wattier R, Galipaud M et al (2014) Confrontation of cryptic diversity and mate discrimination within Gammarus pulex and Gammarus fossarum species complexes. Freshw Biol 59:2555–2570. https://doi.org/10.1111/fwb.12453

    Article  Google Scholar 

  18. Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  19. Altschul S, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  20. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30:1229–1235. https://doi.org/10.1093/molbev/mst012

    Article  CAS  PubMed  Google Scholar 

  22. Faircloth BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94. https://doi.org/10.1111/j.1471-8286.2007.01884.x

    Article  CAS  PubMed  Google Scholar 

  23. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  24. Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20:1004–1010

    Article  CAS  PubMed  Google Scholar 

  25. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233

    Article  CAS  PubMed  Google Scholar 

  26. Van Oosterhout C, Hutchinson WF, Willis DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  27. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 6:485–486

    Article  Google Scholar 

  28. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  29. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  30. Team R development core (2016) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.r-project.org/

Download references

Acknowledgements

This work was supported by UFZ—Helmholtz Centre of Environmental Research (POF III-T32). We would like to thank firstly Dr. Alexander Weigand and Dr. Daniel Grabner from the University Duisburg-Essen for providing specimens of G. pulex from the Ruhr area, and secondly, the two anonymous reviewers for constructive comments, which contributed to the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vid Švara.

Ethics declarations

Conflict of interests

The authors declare that there has been no conflict of interests regarding this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Švara, V., Norf, H., Luckenbach, T. et al. Isolation and characterization of eleven novel microsatellite markers for fine-scale population genetic analyses of Gammarus pulex (Crustacea: Amphipoda). Mol Biol Rep 46, 6609–6615 (2019). https://doi.org/10.1007/s11033-019-05077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05077-y

Keywords

Navigation