Skip to main content

Advertisement

Log in

Identification of potential therapeutic targets of deer antler extract on bone regulation based on serum proteomic analysis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Traditional Chinese medicine has been proven to be effective in treating human diseases according to a long-term observation for more than 2000 years. However, the precise molecular mechanisms of a majority of the medications are still largely unknown. Deer antler has been clinically used as an effective animal medication in traditional Chinese medicine for many centuries. Previous studies have demonstrated that antler extracts play crucial roles in promoting bone and cartilage development, growth and repair. However, the underlying molecular mechanism remains to be elucidated. In the present study, we applied isobaric tags for relative and absolute quantitation (iTRAQ) technology and a systematic bioinformatics analysis accompanied with validation method to obtain a full spectrum of the serum protein profiles under deer antler extract treatment. We identified a complex interaction network formed by the positive regulation of Tropomyosins (Tpm1, 2 and 4), WD repeat-containing protein 1 (Wdr1), Alpha-actinin-1 (Actn1) and Destrin (Dstn) and the negative regulation of Alpha-2-macroglobulin (A2m), Serine protease inhibitor A3 N (Serpina3n) and Apolipoproteins (Apoh and Apof), which coordinately interact with multiple proteins and signaling pathways. Our results suggest that the therapeutic effects of deer antler extract on treating bone diseases might achieved though the regulation of bone formation and remodeling by controlling a series of serum proteins and signaling pathways that were essential for osteoblast and osteoclast activities. Thus, this study has greatly deepened the current knowledge about the molecular mechanism of therapeutic effects of deer antler extract on bone diseases such as osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moreau M, Dupuis J, Bonneau NH, Lécuyer M (2004) Clinical evaluation of a powder of quality elkvelvet antler for the treatment of osteoarthrosis in dogs. Can Vet J 45:133–139

    PubMed  PubMed Central  Google Scholar 

  2. Price J, Allen S (2004) Exploring the mechanisms regulating regeneration of deer antlers. Philos Trans R Soc Lond B 359:809–822

    Article  CAS  Google Scholar 

  3. Zhang LZ, Xin JL, Zhang XP, Fu Q, Zhang Y, Zhou QL (2013) The anti-osteoporotic effect of velvet antler polypeptides from Cervus elaphus Linnaeus in ovariectomized rats. J Ethnopharmacol 150:181–186

    Article  CAS  PubMed  Google Scholar 

  4. Sui Z, Zhang L, Huo Y, Zhang Y (2014) Bioactive components of velvet antlers and their pharmacological properties. J Pharm Biomed Anal 87:229–240

    Article  CAS  PubMed  Google Scholar 

  5. Kim KS, Choi YH, Kim KH, Lee YC, Kim CH, Moon SH, Kang SG, Park YG (2004) Protective and anti-arthritic effects of deer antler aqua-acupuncture (DAA), inhibiting dihydroorotate dehydrogenase, on phosphate ions-mediated chondrocyte apoptosis and rat collagen-induced arthritis. Int Immunopharmacol 4:963–973

    Article  CAS  PubMed  Google Scholar 

  6. Shi B, Li G, Wang P, Yin W, Sun G, Wu Q, Yu G (2010) Effect of antler extract on corticosteroid-induced avascular necrosis of the femoral head in rats. J Ethnopharmacol 127:124–129

    Article  PubMed  Google Scholar 

  7. Chen J, Yang Y, Abbasi S, Hajinezhad D, Kontulainen S, Honaramooz A (2015) The effects of elk velvet antler dietary supplementation on physical growth and bone development in growing rats. Evid Based Complement Altern Med 2015:819520

    Google Scholar 

  8. Pu R, Peng H (2018) 11β-hydroxysteroid dehydrogenases as targets in the treatment of steroid-associated femoral head necrosis using antler extract. Exp Ther Med 15:977–984

    CAS  PubMed  Google Scholar 

  9. Yao B, Zhang M, Leng X, Liu M, Liu Y, Hu Y, Zhao D, Zhao Y (2018) Antler extracts stimulate chondrocyte proliferation and possess potent anti-oxidative, anti-inflammatory, and immune-modulatory properties. Vitro Cell Dev Biol Anim 54:439–448

    Article  CAS  Google Scholar 

  10. Cho WC (2007) Application of proteomics in Chinese medicine research. Am J Chin Med 35:911–922

    Article  CAS  PubMed  Google Scholar 

  11. Lao Y, Wang X, Xu N, Zhang H, Xu H (2014) Application of proteomics to determine the mechanism of action of traditional Chinese medicine remedies. J Ethnopharmacol 155:1–8

    Article  CAS  PubMed  Google Scholar 

  12. Ji Q, Zhu F, Liu X, Li Q, Su SB (2015) Recent advance in applications of proteomics technologies on traditional Chinese medicine research. Evid Based Complement Altern Med 2015:983139

    Google Scholar 

  13. Suo T, Wang H, Li Z (2016) Application of proteomics in research on traditional Chinese medicine. Expert Rev Proteomics 13:873–881

    Article  CAS  PubMed  Google Scholar 

  14. Chandramouli K, Qian PY (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomics Proteomics 2009:239204

    PubMed  PubMed Central  Google Scholar 

  15. Zhang AH, Sun H, Yan GL, Han Y, Wang XJ (2013) Serum proteomics in biomedical research: a systematic review. Appl Biochem Biotechnol 170:774–786

    Article  CAS  PubMed  Google Scholar 

  16. Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7:340–350

    Article  CAS  PubMed  Google Scholar 

  17. Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH (2017) Proteomics: technologies and their applications. J Chromatogr Sci 55:182–196

    Article  CAS  PubMed  Google Scholar 

  18. Reagan-Shaw S, Nihal M, Ahmad N (2008) Dose translation from animal to human studies revisited. FASEB J 22:659–661

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Z, Wang W, Jin L, Cao X, Jian G, Wu N, Xu X, Yao Y, Wang D (2017) iTRAQ-based quantitative proteomics analysis of the protective effect of yinchenwuling powder on hyperlipidemic rats. Evid Based Complement Altern Med 2017:3275096

    Google Scholar 

  20. Yang J, Yang L, Li B, Zhou W, Zhong S, Zhuang Z, Yang B, Chen M, Feng Q (2016) iTRAQ-based proteomics identification of serum biomarkers of two chronic hepatitis B subtypes diagnosed by traditional Chinese medicine. Biomed Res Int 2016:3290260

    PubMed  PubMed Central  Google Scholar 

  21. Yao B, Lu B, Zhang M, Gao H, Leng X, Zhao D (2018) The Chinese medicinal formulation Guzhi Zengsheng Zhitongwan modulates chondrocyte structure, dynamics, and metabolism by controlling multiple functional proteins. Biomed Res Int 2018:9847286

    PubMed  PubMed Central  Google Scholar 

  22. Tseng SH, Sung HC, Chen LG, Lai YJ, Wang KT, Sung CH, Wang CC (2012) Effects of velvet antler with blood on bone in ovariectomized rats. Molecules 17:10574–10585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Huang CC, Chen YM, Kan NW, Chao HL, Ho CS, Hsu MC (2014) Cornu cervi pantotrichum supplementation improves exercise performance and protects against physical fatigue in mice. Molecules 19:4669–4680

    Article  PubMed  PubMed Central  Google Scholar 

  24. Candotti F, Notarangelo L, Visconti R, O’Shea J (2002) Molecular aspects of primary immunodeficiencies: lessons from cytokine and other signaling pathways. J Clin Invest 109:1261–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Munaron L, Antoniotti S, Lovisolo D (2004) Intracellular calcium signals and control of cell proliferation: how many mechanisms? J Cell Mol Med 8:161–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sweeney SE, Firestein GS (2004) Signal transduction in rheumatoid arthritis. Curr Opin Rheumatol 16:231–237

    Article  CAS  PubMed  Google Scholar 

  27. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11:633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Puri KD, Di Paolo JA, Gold MR (2013) B-cell receptor signaling inhibitors for treatment of autoimmune inflammatory diseases and B-cell malignancies. Int Rev Immunol 32:397–427

    Article  CAS  PubMed  Google Scholar 

  29. Gomez-Cambronero J (2014) Phospholipase D in cell signaling: from a myriad of cell functions to cancer growth and metastasis. J Biol Chem 289:22557–22566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pauwels AM, Trost M, Beyaert R, Hoffmann E (2017) Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol 38:407–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gunning PW, Hardeman EC, Lappalainen P, Mulvihill DP (2015) Tropomyosin—master regulator of actin filament function in the cytoskeleton. J Cell Sci 128:2965–2974

    Article  CAS  PubMed  Google Scholar 

  32. Gateva G, Kremneva E, Reindl T, Kotila T, Kogan K, Gressin L, Gunning PW, Manstein DJ, Michelot A, Lappalainen P (2017) Tropomyosin isoforms specify functionally distinct actin filament populations in vitro. Curr Biol 27:705–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. McMichael BK, Kotadiya P, Singh T, Holliday LS, Lee BS (2006) Tropomyosin isoforms localize to distinct microfilament populations in osteoclasts. Bone 39:694–705

    Article  CAS  PubMed  Google Scholar 

  34. Kotadiya P, McMichael BK, Lee BS (2008) High molecular weight tropomyosins regulate osteoclast cytoskeletal morphology. Bone 43:951–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McMichael BK, Lee BS (2008) Tropomyosin 4 regulates adhesion structures and resorptive capacity in osteoclasts. Exp Cell Res 314:564–573

    Article  CAS  PubMed  Google Scholar 

  36. Kato A, Kurita S, Hayashi A, Kaji N, Ohashi K, Mizuno K (2008) Critical roles of actin-interacting protein 1 in cytokinesis and chemotactic migration of mammalian cells. Biochem J 414:261–270

    Article  CAS  PubMed  Google Scholar 

  37. Luxenburg Heller, Pasolli HA, Chai S, Nikolova M, Stokes N, Fuchs E (2015) Wdr1-mediated cell shape dynamics and cortical tension are essential for epidermal planar cell polarity. Nat Cell Biol 7:592–604

    Article  Google Scholar 

  38. Xiao Y, Ma H, Wan P, Qin D, Wang X, Zhang X, Xiang Y, Liu W, Chen J, Yi Z, Li L (2016) Trp-Asp (WD) repeat domain 1 is essential for mouse peri-implantation development and regulates cofilin phosphorylation. J Biol Chem 292:1438–1448

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yuan B, Zhang R, Hu J, Liu Z, Yang C, Zhang T, Zhang C (2018) WDR1 promotes cell growth and migration and contributes to malignant phenotypes of non-small cell lung cancer through ADF/cofilin-mediated Actin Dynamics. Int J Biol Sci 14:1067–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dallas SL, Bonewald LF (2010) Dynamics of the transition from osteoblast to osteocyte. Ann N Y Acad Sci 1192:437–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shuang F, Sun Y, Yang HH, Shao YC, Li H, Hu W, Zhong J, Zou HX (2013) Destrin deletion enhances the bone loss in hindlimb suspended mice. Eur J Appl Physiol 113:403–410

    Article  CAS  PubMed  Google Scholar 

  42. Li S, Shu B, Zhang Y, Li J, Guo J, Wang Y, Ren F, Xiao G, Chang Z, Chen D (2014) Carboxyl terminus of Hsp70-interacting protein regulation of osteoclast formation in mice through promotion of tumor necrosis factor receptor-associated factor 6 protein degradation. Arthritis Rheumatol 66:1854–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu SM, Shih LH, Lee JY, Shen YJ, Lee HH (2015) Estrogen enhances activity of Wnt signaling during osteogenesis by inducing Fhl1 expression. J Cell Biochem 116:1419–1430

    Article  CAS  PubMed  Google Scholar 

  44. Menaa C, Esser E, Sprague SM (2008) Beta2-microglobulin stimulates osteoclast formation. Kidney Int 73:1275–1281

    Article  CAS  PubMed  Google Scholar 

  45. Onan D, Allan EH, Quinn JM, Gooi JH, Pompolo S, Sims NA, Gillespie MT, Martin TJ (2009) The chemokine Cxcl1 is a novel target gene of parathyroid hormone (PTH)/PTH-related protein in committed osteoblasts. Endocrinology 150:2244–2253

    Article  CAS  PubMed  Google Scholar 

  46. Ahn H, Lee K, Kim JM, Kwon SH, Lee SH, Lee SY, Jeong D (2016) Accelerated lactate dehydrogenase activity potentiates osteoclastogenesis via NFATc1 signaling. PLoS ONE 11:e0153886

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hikiji H, Ishii S, Yokomizo T, Takato T, Shimizu T (2009) A distinctive role of the leukotriene B4 receptor BLT1 in osteoclastic activity during bone loss. Proc Natl Acad Sci USA 106:21294–21299

    Article  CAS  PubMed  Google Scholar 

  48. Tristan C, Shahani N, Sedlak TW, Sawa A (2011) The diverse functions of GAPDH: views from different subcellular compartments. Cell Signal 23:317–323

    Article  CAS  PubMed  Google Scholar 

  49. Dejaeger M, Böhm AM, Dirckx N, Devriese J, Nefyodova E, Cardoen R, St-Arnaud R, Tournoy J, Luyten FP, Maes C (2017) Integrin-linked kinase regulates bone formation by controlling cytoskeletal organization and modulating BMP and Wnt signaling in osteoprogenitors. J Bone Miner Res 32:2087–2102

    Article  CAS  PubMed  Google Scholar 

  50. Cruikshank WW, Kornfeld H, Center DM (2000) Interleukin-16. J Leukoc Biol 67:757–766

    Article  CAS  PubMed  Google Scholar 

  51. Ricklin D, Lambris JD (2013) Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol 190:3831–3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lemmon MA, Ferguson KM, Abrams CS (2002) Pleckstrin homology domains and the cytoskeleton. FEBS Lett 513:71–76

    Article  CAS  PubMed  Google Scholar 

  53. Hendershott MC, Vale RD (2014) Regulation of microtubule minus-end dynamics by CAMSAPs and Patronin. Proc Natl Acad Sci USA 111:5860–5865

    Article  CAS  PubMed  Google Scholar 

  54. Kitaeva AB, Demchenko KN, Tikhonovich IA, Timmers AC, Tsyganov VE (2016) Comparative analysis of the tubulin cytoskeleton organization in nodules of Medicago truncatula and Pisum sativum: bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements. New Phytol 210:168–183

    Article  CAS  PubMed  Google Scholar 

  55. Zreiqat H, Howlett CR, Gronthos S, Hume D, Geczy CL (2007) S100A8/S100A9 and their association with cartilage and bone. J Mol Histol 38:381–391

    Article  CAS  PubMed  Google Scholar 

  56. Gavish H, Bab I, Tartakovsky A, Chorev M, Mansur N, Greenberg Z, Namdar-Attar M, Muhlrad A (1997) Human alpha 2-macroglobulin is an osteogenic growth peptide-binding protein. Biochemistry 36:14883–14888

    Article  CAS  PubMed  Google Scholar 

  57. Rueda JC, Duque MA, Mantilla RD, Iglesias-Gamarra A (2009) Osteonecrosis and antiphospholipid syndrome. J Clin Rheumatol 15:130–132

    Article  PubMed  Google Scholar 

  58. Chiu WC, Chiou TJ, Chung MJ, Chiang AN (2016) β2-glycoprotein I inhibits vascular endothelial growth factor-induced angiogenesis by suppressing the phosphorylation of extracellular signal-regulated kinase 1/2, Akt, and endothelial nitric oxide synthase. PLoS ONE 11:e0161950

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hong GJ, Lin N, Chen LL, Chen XB, He W (2016) Association between vascular endothelial growth factor gene polymorphisms and the risk of osteonecrosis of the femoral head: systematic review. Biomed Rep 4:92–96

    Article  PubMed  Google Scholar 

  60. Schilling AF, Schinke T, Münch C, Gebauer M, Niemeier A, Priemel M, Streichert T, Rueger JM, Amling M (2005) Increased bone formation in mice lacking apolipoprotein E. J Bone Miner Res 20:274–282

    Article  CAS  PubMed  Google Scholar 

  61. Ishida M, Kawao N, Okada K, Tatsumi K, Sakai K, Nishio K, Kaji H (2018) Serpina3n, dominantly expressed in female osteoblasts, suppresses the phenotypes of differentiated osteoblasts in mice. Endocrinology 159:3775–3790

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2018YFC1706605), the TCM Clinical Research Centre for Bone diseases of Jilin Province (Grant No. 20180623048TC) and the Science and Technology Development Project of Jilin Province (Grant No. 20170520044JH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangyang Leng or Daqing Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were performed in accordance with the guidelines of the Institutional Animal Ethics Committee of Changchun University of Chinese Medicine (No. ccucm-2017-0015).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, B., Gao, H., Liu, J. et al. Identification of potential therapeutic targets of deer antler extract on bone regulation based on serum proteomic analysis. Mol Biol Rep 46, 4861–4872 (2019). https://doi.org/10.1007/s11033-019-04934-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04934-0

Keywords

Navigation