Skip to main content

Advertisement

Log in

In-vitro and in-silico investigation of protective mechanisms of crocin against E46K α-synuclein amyloid formation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

α-Synuclein is a presynaptic neuronal protein that is abundant in the human brain and is linked genetically and neuropathologically to Parkinson’s disease (PD). The E46K mutation of the α-synuclein gene has been linked to autosomal dominant early-onset of PD. Crocin is a carotenoid chemical compound of saffron that has been shown antioxidant and neural protective activity. This study examined the effect of Crocin in preventing the amyloid fibril in the E46K α-synuclein, through in vitro studies and computational simulations. The result demonstrated that Crocin acts as a molecular chaperone to prevent amyloid fibril formation of E46K α-synuclein in a concentration-dependent manner. In fact, Crocin redirects E46K α-synuclein from a fibril-formation pathway towards an amorphous aggregation pathway or at least reduce its aggregation tendency. Combined results from molecular dynamics and docking studies indicate that the inhibitory effect of the Crocin may be due to binding of the Crocin with the hydrophobic region (contact interface) of the α-synuclein which has the propensity to form amyloid aggregate. The results indicated Crocin can potentially bind to the C-terminal and mainly NAC (central hydrophobic region) domain of the E46K α-synuclein, and stabilizes the protein by masking the polymerization hotspot and consequently converting the protein into amyloid fibrils. These results support that Crocin is a effective inhibitor of E46K α-synuclein fibrillization and it could be considered as a potential therapeutic agent in the treatment of Parkinson disease.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stefanis L (2012) Alpha-synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med 2(2):a009399. https://doi.org/10.1101/cshperspect.a009399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Emamzadeh FN (2016) Alpha-synuclein structure, functions, and interactions. J Res Med Sci 21:29. https://doi.org/10.4103/1735-1995.181989

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wersinger C, Sidhu A (2003) Attenuation of dopamine transporter activity by alpha-synuclein. Neurosci Lett 340(3):189–192

    Article  CAS  PubMed  Google Scholar 

  4. Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S, Singleton A, Olanow CW, Merchant KM, Bezard E, Petsko GA, Meissner WG (2015) Targeting alpha-synuclein for treatment of Parkinson’s disease: mechanistic and therapeutic considerations. Lancet Neurol 14(8):855–866. https://doi.org/10.1016/s1474-4422(15)00006-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rekas A, Adda CG, Andrew Aquilina J, Barnham KJ, Sunde M, Galatis D, Williamson NA, Masters CL, Anders RF, Robinson CV, Cappai R, Carver JA (2004) Interaction of the molecular chaperone alphaB-crystallin with alpha-synuclein: effects on amyloid fibril formation and chaperone activity. J Mol Biol 340(5):1167–1183. https://doi.org/10.1016/j.jmb.2004.05.054

    Article  CAS  PubMed  Google Scholar 

  6. Cox D, Carver JA, Ecroyd H (2014) Preventing alpha-synuclein aggregation: the role of the small heat-shock molecular chaperone proteins. Biochem Biophys Acta 1842(9):1830–1843. https://doi.org/10.1016/j.bbadis.2014.06.024

    Article  CAS  PubMed  Google Scholar 

  7. Uversky VN, Eliezer D (2009) Biophysics of Parkinson’s disease: structure and aggregation of alpha-synuclein. Curr Protein Pept Sci 10(5):483–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodriguez JA, Ivanova MI, Sawaya MR, Cascio D, Reyes FE, Shi D, Sangwan S, Guenther EL, Johnson LM, Zhang M, Jiang L, Arbing MA, Nannenga BL, Hattne J, Whitelegge J, Brewster AS, Messerschmidt M, Boutet S, Sauter NK, Gonen T, Eisenberg DS (2015) Structure of the toxic core of alpha-synuclein from invisible crystals. Nature 525(7570):486–490. https://doi.org/10.1038/nature15368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahn BH, Rhim H, Kim SY, Sung YM, Lee MY, Choi JY, Wolozin B, Chang JS, Lee YH, Kwon TK, Chung KC, Yoon SH, Hahn SJ, Kim MS, Jo YH, Min DS (2002) Alpha-synuclein interacts with phospholipase D isozymes and inhibits pervanadate-induced phospholipase D activation in human embryonic kidney-293 cells. J Biol Chem 277(14):12334–12342. https://doi.org/10.1074/jbc.M110414200

    Article  CAS  PubMed  Google Scholar 

  10. Norris EH, Giasson BI, Lee VM (2004) Alpha-synuclein: normal function and role in neurodegenerative diseases. Curr Top Dev Biol 60:17–54. https://doi.org/10.1016/s0070-2153(04)60002-0

    Article  CAS  PubMed  Google Scholar 

  11. Sode K, Ochiai S, Kobayashi N, Usuzaka E (2007) Effect of reparation of repeat sequences in the human α-synuclein on fibrillation ability. Int J Biol Sci 3(1):1–7

    Article  CAS  Google Scholar 

  12. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science (New York, NY) 276(5321):2045–2047

    Article  CAS  Google Scholar 

  13. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Gomez Tortosa E, del Ser T, Munoz DG, de Yebenes JG (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173. https://doi.org/10.1002/ana.10795

    Article  CAS  PubMed  Google Scholar 

  14. Fredenburg RA, Rospigliosi C, Meray RK, Kessler JC, Lashuel HA, Eliezer D, Lansbury PT Jr (2007) The impact of the E46K mutation on the properties of alpha-synuclein in its monomeric and oligomeric states. Biochemistry 46(24):7107–7118. https://doi.org/10.1021/bi7000246

    Article  CAS  PubMed  Google Scholar 

  15. Lee EN, Cho HJ, Lee CH, Lee D, Chung KC, Paik SR (2004) Phthalocyanine tetrasulfonates affect the amyloid formation and cytotoxicity of alpha-synuclein. Biochemistry 43(12):3704–3715. https://doi.org/10.1021/bi0356707

    Article  CAS  PubMed  Google Scholar 

  16. Yamaguchi Y, Masuda M, Sasakawa H, Nonaka T, Hanashima S, Hisanaga S, Kato K, Hasegawa M (2010) Characterization of inhibitor-bound alpha-synuclein dimer: role of alpha-synuclein N-terminal region in dimerization and inhibitor binding. J Mol Biol 395(3):445–456. https://doi.org/10.1016/j.jmb.2009.10.068

    Article  CAS  PubMed  Google Scholar 

  17. Braga CA, Follmer C, Palhano FL, Khattar E, Freitas MS, Romao L, Di Giovanni S, Lashuel HA, Silva JL, Foguel D (2011) The anti-Parkinsonian drug selegiline delays the nucleation phase of alpha-synuclein aggregation leading to the formation of nontoxic species. J Mol Biol 405(1):254–273. https://doi.org/10.1016/j.jmb.2010.10.027

    Article  CAS  PubMed  Google Scholar 

  18. Chamani J (2006) Comparison of the conformational stability of the non-native alpha-helical intermediate of thiol-modified beta-lactoglobulin upon interaction with sodium n-alkyl sulfates at two different pH. J Colloid Interface Sci 299(2):636–646. https://doi.org/10.1016/j.jcis.2006.02.049

    Article  CAS  PubMed  Google Scholar 

  19. Sharif-Barfeh Z, Beigoli S, Marouzi S, Rad AS, Asoodeh A, Chamani J (2017) Multi-spectroscopic and HPLC studies of the interaction between estradiol and cyclophosphamide with human serum albumin: binary and ternary systems. J Solut Chem 46(2):488–504. https://doi.org/10.1007/s10953-017-0590-2

    Article  CAS  Google Scholar 

  20. Nair SC, Pannikar B, Panikkar KR (1991) Antitumour activity of saffron (Crocus sativus). Cancer Lett 57(2):109–114

    Article  CAS  PubMed  Google Scholar 

  21. Salomi MJ, Nair SC, Panikkar KR (1991) Inhibitory effects of Nigella sativa and saffron (Crocus sativus) on chemical carcinogenesis in mice. Nutr Cancer 16(1):67–72. https://doi.org/10.1080/01635589109514142

    Article  CAS  PubMed  Google Scholar 

  22. Boskabady MH, Shafei MN, Shakiba A, Sefidi HS (2008) Effect of aqueous-ethanol extract from Crocus sativus (saffron) on guinea-pig isolated heart. Phytother Res: PTR 22(3):330–334. https://doi.org/10.1002/ptr.2317

    Article  CAS  PubMed  Google Scholar 

  23. Bathaie SZ, Mousavi SZ (2010) New applications and mechanisms of action of saffron and its important ingredients. Crit Rev Food Sci Nutr 50(8):761–786. https://doi.org/10.1080/10408390902773003

    Article  CAS  PubMed  Google Scholar 

  24. Hosseinzadeh H, Talebzadeh F (2005) Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Fitoterapia 76(7–8):722–724. https://doi.org/10.1016/j.fitote.2005.07.008

    Article  CAS  PubMed  Google Scholar 

  25. Noorbala AA, Akhondzadeh S, Tahmacebi-Pour N, Jamshidi AH (2005) Hydro-alcoholic extract of Crocus sativus L. versus fluoxetine in the treatment of mild to moderate depression: a double-blind, randomized pilot trial. J Ethnopharmacol 97(2):281–284. https://doi.org/10.1016/j.jep.2004.11.004

    Article  CAS  PubMed  Google Scholar 

  26. Razavi BM, Seydali Seyfabad M, Hosseinzadeh H, Imenshahidi M (2017) Crocin-induced endothelium-dependent relaxation in isolated rat aorta. Jundishapur J Nat Pharm Prod 12(2):e32801. https://doi.org/10.5812/jjnpp.32801

    Article  CAS  Google Scholar 

  27. Ochiai T, Ohno S, Soeda S, Tanaka H, Shoyama Y, Shimeno H (2004) Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of alpha-tocopherol. Neurosci Lett 362(1):61–64. https://doi.org/10.1016/j.neulet.2004.02.067

    Article  CAS  PubMed  Google Scholar 

  28. Assimopoulou AN, Sinakos Z, Papageorgiou VP (2005) Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res: PTR 19(11):997–1000. https://doi.org/10.1002/ptr.1749

    Article  CAS  PubMed  Google Scholar 

  29. Soeda S, Ochiai T, Shimeno H, Saito H, Abe K, Tanaka H, Shoyama Y (2007) Pharmacological activities of crocin in saffron. J Nat Med 61(2):102–111. https://doi.org/10.1007/s11418-006-0120-9

    Article  CAS  Google Scholar 

  30. Sugiura M, Shoyama Y, Saito H, Abe K (1994) Crocin (crocetin di-gentiobiose ester) prevents the inhibitory effect of ethanol on long-term potentiation in the dentate gyrus in vivo. J Pharmacol Exp Ther 271(2):703–707

    CAS  PubMed  Google Scholar 

  31. Abe K, Saito H (2000) Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytother Res: PTR 14(3):149–152

    Article  CAS  PubMed  Google Scholar 

  32. Zhang X, Fan Z, Jin T (2017) Crocin protects against cerebral- ischemia-induced damage in aged rats through maintaining the integrity of blood-brain barrier. Restor Neurol Neurosci 35(1):65–75. https://doi.org/10.3233/rnn-160696

    Article  CAS  PubMed  Google Scholar 

  33. Sarshoori JR, Asadi MH, Mohammadi MT (2014) Neuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat. Iran J Basic Med Sci 17(11):895–902

    PubMed  PubMed Central  Google Scholar 

  34. Ghahghaei A, Bathaie SZ, Kheirkhah H, Bahraminejad E (2013) The protective effect of crocin on the amyloid fibril formation of Abeta42 peptide in vitro. Cell Mol Biol Lett 18(3):328–339. https://doi.org/10.2478/s11658-013-0092-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mendonca A, Rocha AC, Duarte AC, Santos EB (2013) The inner filter effects and their correction in fluorescence spectra of salt marsh humic matter. Anal Chim Acta 788:99–107. https://doi.org/10.1016/j.aca.2013.05.051

    Article  CAS  PubMed  Google Scholar 

  36. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schymkowitz J, Borg J, Stricher F, Nys R, Rousseau F, Serrano L (2005) The FoldX web server: an online force field. Nucleic Acids Res 33(Web Server issue):W382–W388. https://doi.org/10.1093/nar/gki387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Biancalana M, Koide S (2010) Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochem Biophys Acta 1804(7):1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001

    Article  CAS  PubMed  Google Scholar 

  39. Breydo L, Wu JW, Uversky VN (2012) Alpha-synuclein misfolding and Parkinson’s disease. Biochem Biophys Acta 1822(2):261–285. https://doi.org/10.1016/j.bbadis.2011.10.002

    Article  CAS  PubMed  Google Scholar 

  40. Greenbaum EA, Graves CL, Mishizen-Eberz AJ, Lupoli MA, Lynch DR, Englander SW, Axelsen PH, Giasson BI (2005) The E46K mutation in alpha-synuclein increases amyloid fibril formation. J Biol Chem 280(9):7800–7807. https://doi.org/10.1074/jbc.M411638200

    Article  CAS  PubMed  Google Scholar 

  41. Nath S, Meuvis J, Hendrix J, Carl SA, Engelborghs Y (2010) Early aggregation steps in alpha-synuclein as measured by FCS and FRET: evidence for a contagious conformational change. Biophys J 98(7):1302–1311. https://doi.org/10.1016/j.bpj.2009.12.4290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goedert M (2001) Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2(7):492–501. https://doi.org/10.1038/35081564

    Article  CAS  PubMed  Google Scholar 

  43. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108. https://doi.org/10.1038/ng0298-106

    Article  CAS  PubMed  Google Scholar 

  44. Serpell LC, Berriman J, Jakes R, Goedert M, Crowther RA (2000) Fiber diffraction of synthetic alpha-synuclein filaments shows amyloid-like cross-beta conformation. Proc Natl Acad Sci USA 97(9):4897–4902

    Article  CAS  PubMed  Google Scholar 

  45. Jiang M, Porat-Shliom Y, Pei Z, Cheng Y, Xiang L, Sommers K, Li Q, Gillardon F, Hengerer B, Berlinicke C, Smith W, Zack D, Poirier MA, Ross CA, Duan W (2010) Baicalein reduces E46K α-synuclein aggregation in vitro and protects cells against E46K α-synuclein toxicity in cell models of familiar Parkinsonism. J Neurochem 114(2):419–429. https://doi.org/10.1111/j.1471-4159.2010.06752.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Moshiri E, Basti AA, Noorbala AA, Jamshidi AH, Hesameddin Abbasi S, Akhondzadeh S (2006) Crocus sativus L. (petal) in the treatment of mild-to-moderate depression: a double-blind, randomized and placebo-controlled trial. Phytomedicine 13(9–10):607–611. https://doi.org/10.1016/j.phymed.2006.08.006

    Article  PubMed  Google Scholar 

  47. Waudby CA, Knowles TP, Devlin GL, Skepper JN, Ecroyd H, Carver JA, Welland ME, Christodoulou J, Dobson CM, Meehan S (2010) The interaction of alphaB-crystallin with mature alpha-synuclein amyloid fibrils inhibits their elongation. Biophys J 98(5):843–851. https://doi.org/10.1016/j.bpj.2009.10.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Conway KA, Harper JD, Lansbury PT (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4(11):1318–1320. https://doi.org/10.1038/3311

    Article  CAS  PubMed  Google Scholar 

  49. Conway KA, Harper JD, Lansbury PT Jr (2000) Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry 39(10):2552–2563

    Article  CAS  PubMed  Google Scholar 

  50. Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman SA, Martin F, Sitney K, Denis P, Louis JC, Wypych J, Biere AL, Citron M (1999) Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 274(14):9843–9846

    Article  CAS  PubMed  Google Scholar 

  51. Weinreb PH, Zhen W, Poon AW, Conway KA, Lansbury PT Jr (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35(43):13709–13715. https://doi.org/10.1021/bi961799n

    Article  CAS  PubMed  Google Scholar 

  52. Uversky VN, Li J, Fink AL (2001) Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 276(14):10737–10744. https://doi.org/10.1074/jbc.M010907200

    Article  CAS  PubMed  Google Scholar 

  53. Rajagopalan S, Andersen JK (2001) Alpha synuclein aggregation: is it the toxic gain of function responsible for neurodegeneration in Parkinson’s disease? Mech Ageing Dev 122(14):1499–1510

    Article  CAS  PubMed  Google Scholar 

  54. Fink AL (2006) The aggregation and fibrillation of alpha-synuclein. Acc Chem Res 39(9):628–634. https://doi.org/10.1021/ar050073t

    Article  CAS  PubMed  Google Scholar 

  55. Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103(1):17–37. https://doi.org/10.1111/j.1471-4159.2007.04764.x

    Article  CAS  PubMed  Google Scholar 

  56. Goedert M (1999) Filamentous nerve cell inclusions in neurodegenerative diseases: tauopathies and alpha-synucleinopathies. Philos Trans R Soc B 354(1386):1101–1118

    Article  CAS  Google Scholar 

  57. Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of α-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14(1):38–48. https://doi.org/10.1038/nrn3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zibaee S, Fraser G, Jakes R, Owen D, Serpell LC, Crowther RA, Goedert M (2010) Human beta-synuclein rendered fibrillogenic by designed mutations. J Biol Chem 285(49):38555–38567. https://doi.org/10.1074/jbc.M110.160721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choi W, Zibaee S, Jakes R, Serpell LC, Davletov B, Crowther RA, Goedert M (2004) Mutation E46K increases phospholipid binding and assembly into filaments of human alpha-synuclein. FEBS Lett 576(3):363–368. https://doi.org/10.1016/j.febslet.2004.09.038

    Article  CAS  PubMed  Google Scholar 

  60. Zibaee S, Jakes R, Fraser G, Serpell LC, Crowther RA, Goedert M (2007) Sequence determinants for amyloid fibrillogenesis of human α-synuclein. J Mol Biol 374(2):454–464. https://doi.org/10.1016/j.jmb.2007.09.039

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the university of Sistan and Baluchestan for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezou Ghahghaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi Tigan, M., Ghahghaei, A. & Lagzian, M. In-vitro and in-silico investigation of protective mechanisms of crocin against E46K α-synuclein amyloid formation. Mol Biol Rep 46, 4279–4292 (2019). https://doi.org/10.1007/s11033-019-04882-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04882-9

Keywords

Navigation