Skip to main content

Advertisement

Log in

Real-time polymerase chain reaction assays for rapid detection and virulence evaluation of the environmental Pseudomonas aeruginosa isolates

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Rapid and species-specific detection, and virulence evaluation of opportunistic pathogens such as Pseudomonas aeruginosa, are issues that increasingly has attracted the attention of public health authorities. A set of primers and hydrolysis probe was designed based on one of the P. aeruginosa housekeeping genes, gyrB, and its specificity and sensitivity was evaluated by TaqMan qPCR methods. The end point PCR and SYBR Green qPCR were used as control methods. Furthermore, multiplex RT-qPCRs were developed for gyrB as reference and four virulence genes, including lasB, lasR, rhlR and toxA. Totally, 40 environmental samples, two clinical isolates from CF patients, two standard strains of P. aeruginosa, and 15 non-target reference strains were used to test the sensitivity and specificity of qPCR assays. In silico and in vitro cross-species testing confirmed the high specificity and low cross-species amplification of the designed gyrB418F/gyrB490R/gyrB444P. The sensitivity of both TaqMan and SYBR Green qPCRs was 100% for all target P. aeruginosa, and the detected count of bacteria was below ten genomic equivalents. The lowest M value obtained from gene-stability measurement was 0.19 that confirmed the suitability of gyrB as the reference gene for RT-qPCR. The developed qPCRs have enough detection power for identification of P. aeruginosa in environmental samples including clean and recreational water, treated and untreated sewage and soil. The short amplicon length of our designed primers and probes, alongside with a low M value, make it as a proper methodology for RT-qPCR in virulence genes expression assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kerr KG, Snelling AM (2009) Pseudomonas aeruginosa: a formidable and ever-present adversary. J Hosp Infect 73(4):338–344

    Article  CAS  PubMed  Google Scholar 

  2. Falkinham JO, Hilborn ED, Arduino MJ, Pruden A, Edwards MA (2015) Epidemiology and ecology of opportunistic premise plumbing pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. Environ Health Perspect 123(8):749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. National Nosocomial Infections Surveillance System (2004) National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. J Am J Infect Control 32(8):470–485

    Article  Google Scholar 

  4. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK (2008) Antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29(11):996–1011

    Article  PubMed  Google Scholar 

  5. Weiner LM, Webb AK, Limbago B, Dudeck MA, Patel J, Kallen AJ, Edwards JR, Sievert DM (2016) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol 37(11):1288–1301

    Article  PubMed  Google Scholar 

  6. Hlavsa MC, Roberts VA, Kahler AM, Hilborn ED, Wade TJ, Backer LC, Yoder JS (2014) Recreational water–associated disease outbreaks—United States, 2009–2010. MMWR Morb Mortal Wkly Rep 63(1):6

    PubMed  PubMed Central  Google Scholar 

  7. Anaissie EJ, Penzak SR, Dignani MC (2002) The hospital water supply as a source of nosocomial infections: a plea for action. Arch Intern Med 162(13):1483–1492

    Article  PubMed  Google Scholar 

  8. Aaron SD, Vandemheen KL, Ramotar K, Giesbrecht-Lewis T, Tullis E, Freitag A, Paterson N, Jackson M, Lougheed MD, Dowson CJJ (2010) Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. JAMA 304(19):2145–2153

    Article  CAS  PubMed  Google Scholar 

  9. Maschmeyer G, Braveny I (2000) Review of the incidence and prognosis of Pseudomonas aeruginosa infections in cancer patients in the 1990s. Eur J Clin Microbiol Infect Dis 19(12):915–925

    Article  CAS  PubMed  Google Scholar 

  10. Weinstein RA, Gaynes R, Edwards JR (2005) Overview of nosocomial infections caused by Gram-negative Bacilli. Clin Infect Dis 41(6):848–854

    Article  Google Scholar 

  11. Klockgether J, Cramer N, Wiehlmann L, Davenport CF, Tümmler B (2011) Pseudomonas aeruginosa genomic structure and diversity. Front Microbiol 2:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Le Berre R, Nguyen S, Nowak E, Kipnis E, Pierre M, Ader F, Courcol R, Guery B, Faure K (2008) Quorum-sensing activity and related virulence factor expression in clinically pathogenic isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 14(4):337–343

    Article  PubMed  Google Scholar 

  13. Storey DG, Ujack EE, Rabin HR, Mitchell I (1998) Pseudomonas aeruginosa lasRTranscription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun 66(6):2521–2528

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Welsh MA, Eibergen NR, Moore JD, Blackwell HE (2015) Small molecule disruption of quorum sensing cross-regulation in Pseudomonas aeruginosa causes major and unexpected alterations to virulence phenotypes. J Am Chem Soc 137(4):1510–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Leduc D, Beaufort N, de Bentzmann S, Rousselle J-C, Namane A, Chignard M, Pidard D (2007) The Pseudomonas aeruginosa LasB metalloproteinase regulates the human urokinase-type plasminogen activator receptor through domain-specific endoproteolysis. Infect Immun 75(8):3848–3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kany AM, Sikandar A, Jr Haupenthal, Yahiaoui S, Maurer CK, Proschak E, Köhnke J, Hartmann RW (2018) Binding mode characterization and early in vivo evaluation of fragment-like thiols as inhibitors of the virulence factor lasB from Pseudomonas aeruginosa. ACS Infect Dis 4(6):988–997

    Article  CAS  PubMed  Google Scholar 

  17. Blier A-S, Veron W, Bazire A, Gerault E, Taupin L, Vieillard J, Rehel K, Dufour A, Le Derf F, Orange N, Hulen C, Feuilloley MGJ, Lesouhaitier O (2011) C-type natriuretic peptide modulates quorum sensing molecule and toxin production in Pseudomonas aeruginosa. Microbiology 157(Pt 7):1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Michalska M, Wolf P (2015) Pseudomonas Exotoxin A: optimized by evolution for effective killing. Front Microbiol 6:963

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146(10):2385–2394

    Article  CAS  PubMed  Google Scholar 

  20. Qin X, Emerson J, Stapp J, Stapp L, Abe P, Burns JL (2003) Use of real-time PCR with multiple targets to identify Pseudomonas aeruginosa and other nonfermenting Gram-negative bacilli from patients with cystic fibrosis. Avicenna J Clin Microbiol Infect 41(9):4312–4317

    CAS  Google Scholar 

  21. Lavenir R, Jocktane D, Laurent F, Nazaret S, Cournoyer B (2007) Improved reliability of Pseudomonas aeruginosa PCR detection by the use of the species-specific ecfX gene target. J Microbiol Methods 70(1):20–29

    Article  CAS  PubMed  Google Scholar 

  22. Anuj SN, Whiley DM, Kidd TJ, Bell SC, Wainwright CE, Nissen MD, Sloots TP (2009) Identification of Pseudomonas aeruginosa by a duplex real-time polymerase chain reaction assay targeting the ecfX and the gyrB genes. Diagn Microbiol Infect Dis 63(2):127–131

    Article  CAS  PubMed  Google Scholar 

  23. Wang H, Edwards M, Falkinham JO, Pruden A (2012) Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Appl Environ Microbiol 78(17):6285–6294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aghamollaei H, Moghaddam MM, Kooshki H, Heiat M, Mirnejad R, Barzi NS (2015) Detection of Pseudomonas aeruginosa by a triplex polymerase chain reaction assay based on lasI/R and gyrB genes. J Infect Public Health 8(4):314–322

    Article  PubMed  Google Scholar 

  25. Golpayegani A, Douraghi M, Rezaei F, Alimohammadi M, Nabizadeh Nodehi R (2019) Propidium monoazide—quantitative polymerase chain reaction (PMA-qPCR) assay for rapid detection of viable and viable but non-culturable (VBNC) Pseudomonas aeruginosa in swimming pools. J Environ Health Sci Eng. https://doi.org/10.1007/s40201-019-00359-w

    Article  PubMed  Google Scholar 

  26. Procop GW, Church DL, Hall GS, Janda WM (2017) The Nonfermentative Gram-Negative Bacilli. Koneman’s color atlas and textbook of diagnostic microbiology, 7th edn. Wolters Kluwer Health, Philadelphia, pp 389–400

    Google Scholar 

  27. De Vos D, Lim A, Pirnay J-P, Struelens M, Vandenvelde C, Duinslaeger L, Vanderkelen A, Cornelis P (1997) Direct detection and identification of Pseudomonas aeruginosa in clinical samples such as skin biopsy specimens and expectorations by multiplex PCR based on two outer membrane lipoprotein genes, oprI and oprL. Avicenna J Clin Microbiol Infect 35(6):1295–1299

    Google Scholar 

  28. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman FJ (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):1–12

    Article  Google Scholar 

  29. Sartory DP, Brewer M, Beswick A, Steggles D (2015) Evaluation of the Pseudalert®/Quanti-Tray® MPN test for the rapid enumeration of Pseudomonas aeruginosa in swimming pool and spa pool waters. Curr Microbiol 71(6):699–705

    Article  CAS  PubMed  Google Scholar 

  30. Heinemeyer E-A, Luden K (2009) Problems applying DIN EN 12780 for the detection of Pseudomonas aeruginosa in water from natural swimming pools and surface water. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 52(3):345–351

    Article  PubMed  Google Scholar 

  31. Thornton B, Basu C (2011) Real-time PCR (qPCR) primer design using free online software. Biochem Mol Biol Educ 39(2):145–154

    Article  CAS  PubMed  Google Scholar 

  32. Mulet M, Lalucat J, García-Valdés E (2010) DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12(6):1513–1530

    CAS  PubMed  Google Scholar 

  33. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E (2015) Phylogenomics and systematics in Pseudomonas. Front Microbiol 6:214

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chatterjee P, Davis E, Yu F, James S, Wildschutte JH, Wiegmann DD, Sherman DH, McKay RM, LiPuma JJ, Wildschutte H (2017) Environmental pseudomonads inhibit cystic fibrosis patient-derived Pseudomonas aeruginosa. Appl Environ Microbiol 83(2):e02701–e02716

    Article  PubMed  Google Scholar 

  35. Lee CS, Wetzel K, Buckley T, Wozniak D, Lee J (2011) Rapid and sensitive detection of Pseudomonas aeruginosa in chlorinated water and aerosols targeting gyrB gene using real-time PCR. J Appl Microbiol 111(4):893–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Minogue E, Reddington K, Dorai-Raj S, Tuite N, Clancy E, Barry T (2013) Diagnostics method for the rapid quantitative detection and identification of low-level contamination of high-purity water with pathogenic bacteria. J Ind Microbiol Biotechnol 40(9):1005–1013

    Article  CAS  PubMed  Google Scholar 

  37. Motoshima M, Yanagihara K, Fukushima K, Matsuda J, Sugahara K, Hirakata Y, Yamada Y, Kohno S, Kamihira S (2007) Rapid and accurate detection of Pseudomonas aeruginosa by real-time polymerase chain reaction with melting curve analysis targeting gyrB gene. Diagn Microbiol Infect Dis 58(1):53–58

    Article  CAS  PubMed  Google Scholar 

  38. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8(2):R19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is a part of PhD thesis conducted by the first author submitted to Tehran University of Medical Sciences. The authors acknowledge the Center for Water Quality Research (CWQR), Institute for Environmental Research (IER) and Tehran University of Medical Sciences (TUMS), Tehran, Iran, for financially supporting this project (Project No: 96-01-46-34273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Douraghi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golpayegani, A., Nodehi, R.N., Rezaei, F. et al. Real-time polymerase chain reaction assays for rapid detection and virulence evaluation of the environmental Pseudomonas aeruginosa isolates. Mol Biol Rep 46, 4049–4061 (2019). https://doi.org/10.1007/s11033-019-04855-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04855-y

Keywords

Navigation