Skip to main content

Advertisement

Log in

Development of ten microsatellite markers for Alibertia edulis (Rubiaceae), a Brazilian savanna tree species

Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Ten microsatellite markers were developed using next-generation sequencing data for Alibertia edulis (Rubiaceae), a widely distributed species typical of Cerrado (Brazilian savanna) vegetation. The markers were polymorphic in the two populations analyzed. The numbers of alleles, and observed (HO) and expected (HE) heterozygosities per polymorphic locus ranged from 2 to 11, 0.091 to 1.0, and 0.100 to 0.937 respectively. The SSR loci demonstrated moderate to high polymorphism values in both populations analyzed, with PIC values ranging from 0.26 to 0.91, and total allele numbers ranging from three to 16. The inbreeding coefficient values were generally higher in the Piauí population (ranging from − 0.593 to 0.762) than in the Mato Grosso population (ranging from − 1 to 0.575). The differences observed between those disjunct populations suggest they harbor different alleles, which has implications for Cerrado conservation strategies. Those loci will be useful for population studies of A. edulis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Silva FAB, Pereira LAR, Silveira CES (2008) Micropropagation of Alibertia edulis Rich. Braz Arch Biol Technol 51:1103–1114

    Article  Google Scholar 

  2. Silva Júnior MC, Pereira BAS (2009) +100 árvores do cerrado matas de galeria. Rede de Sementes do Cerrado, Brasília

    Google Scholar 

  3. Ratter JA, Bridgewater S, Ribeiro JF (2003) Analysis of the floristic composition of the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinburgh J Botany 60:57–109

    Article  Google Scholar 

  4. Furley PA, Ratter JA (1988) Soil resources and plant communities of the central Brazilian cerrado and their development. J Biogeogr 15:97–108

    Article  Google Scholar 

  5. Ratter JA, Ribeiro JF, Bridgewater S (1997) The Brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230

    Article  Google Scholar 

  6. Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  7. Klink CA, Machado RB (2005) Conservation of the Brazilian cerrado. Conserv Biol 19:707–713

    Article  Google Scholar 

  8. Mittermeier RA, Gil RP, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, Lamourex J, Fonseca GAB (2005) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial eco-regions. University of Chicago Press, Boston

    Google Scholar 

  9. Ritter LMO, Bajay MM, Monteiro M, Souza RGVC, Moreno MA, Kageyama PY (2012) Development of microsatellite markers for Qualea grandiflora (Vochysiaceae), a typical species of the Brazilian cerrado. Am J Bot 99:97–98

    Article  Google Scholar 

  10. Camacho LMD, Schatzer CAF, Alves-Pereira A, Zucchi MI, Carvalho MAM, Gaspar M (2017) Development, characterization and cross-amplification of microsatellite markers for Chrysolaena obovata, an important Asteraceae from Brazilian Cerrado. J Genet. https://doi.org/10.1007/s12041-017-0812-9

    Article  Google Scholar 

  11. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  CAS  PubMed  Google Scholar 

  12. Squirrell J, Hollingsworth PM, Woodhead M, Russel J, Lowe AJ, Gibby M, Powell W (2003) How much effort is required to isolate nuclear microsatellites from plants? Mol Ecol 12:1339–1348

    Article  CAS  PubMed  Google Scholar 

  13. Wöhrmann T, Pinangé DSB, Krapp F, Benko-Iseppon A-M, Huettel B, Weising K (2013) Development of 15 nuclear microsatellite markers in the genus Dyckia (Pitcairnioideae; Bromeliaceae) using 454 pyrosequencing. Conserv Genet Resour 5:81–84

    Article  Google Scholar 

  14. Weising K, Nybom H, Wolff K, Kahl G (2005) DNA fingerprinting in plants: principle, methods and applications. Taylor & Francis Group, Florida

    Book  Google Scholar 

  15. Faircloth B (2008) Msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol 8:92–94

    Article  CAS  Google Scholar 

  16. Ferreira ME, Grattapaglia D (1996) Introdução ao Uso de Marcadores Moleculares em Análise Genética. EMBRAPA/CENARGEN, Brasília

    Google Scholar 

  17. Samarakoon T, Wang SY, Alford MH (2013) Enhancing PCR amplification of DNA from recalcitrant plant specimens using a trehalose-based additive. APPS 1:1200236

    Article  Google Scholar 

  18. Creste S, Tulmann NA, Figueira A (2001) Detection of simple sequence repeat polymorphisms in denaturing polyacrilamide sequencing gels by silver staining. Plant Mol Biol Rep 19:299–306

    Article  CAS  Google Scholar 

  19. Excoffier L, Laval G, Schneider S (2005) Arlequin v. 3.0: An integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    Article  CAS  Google Scholar 

  20. Raymond M, Rousset F (1995) GENEPOP (v. 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  21. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  22. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Res. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  23. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  24. Machado RB, Ramos Neto MB, Pereira PGP, Caldas EF, Gonçalves DA, Santos NS, Tabor K, Steininger M (2004) Estimativas da perda da área do cerrado brasileiro. Relatório técnico não publicado. Conservação Internacional, Brasília DF

    Google Scholar 

  25. Batalha-Filho H, Fjeldsa J, Fabre P-H, Miyaki CY (2013) Connections between the Atlantic and the Amazonian forest avifaunas represent distinct historical events. J Ornithol 154:41–50

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ana Paula Moraes, Felipe Amorim and the Conservation Area managers for their support in the field, and Ana Benko-Iseppon and João Pacífico Bezerra Neto for their assistance with the NGS data analysis. We also thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—fellowship 140699/2010-4), the Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE APQ-0862-2.05/10), and the Fundação Grupo Boticário de Proteção à Natureza (Grant No. 0920_20112) for financial support. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliane G. Dantas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dantas, L.G., Alencar, L., Huettel, B. et al. Development of ten microsatellite markers for Alibertia edulis (Rubiaceae), a Brazilian savanna tree species. Mol Biol Rep 46, 4593–4597 (2019). https://doi.org/10.1007/s11033-019-04819-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04819-2

Keywords

Navigation