Skip to main content
Log in

H2O2 promotes the aging process of melanogenesis through modulation of MITF and Nrf2

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate the effect of H2O2 on the aging of melanogenesis in human melanocytes. The staining of SA-β-galactosidase, an aging marker, was remarkably increased in the cells aged with H2O2 at 62.5 µM or more compared with young cells. The intracellular H2O2 level and melanin synthesis were also reduced in both H2O2-treated cells and senescent cells compared with young cells in DCFH-DA assay. Both the senescent cells and the H2O2-treated cells showed higher expression level of Catalase than young cells in western blot and immunofluorescence staining. Furthermore, the expression levels of TRP-1, TRP-2 and p300 were reduced in both senescent cells and the H2O2-treated cells, but that of SIRT-1 was inverted compared with young cells. In addition, H2O2 reduced the expression level of MITF but increased that of Nrf2 in nucleus. Those results indicate that the expression levels of antioxidant enzymes in senescent cells and H2O2-treated cell are upregulated, but the expression levels of proteins involved in melanin synthesis are downregulated. Above findings suggest that H2O2 could play a key role in the aging process of melanogenesis through modulation of MITF and Nrf2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

DCFH-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

MSRA:

Methionine-S-sulfoxide reductase

MSRB:

Methionine-R-sulfoxide reductase

SOD:

Superoxide dismutase

TRP:

Tyrosinase-related protein

SIRT-1:

Sirtuin-1

References

  1. Terazawa S, Imokawa G (2018) Signaling cascades activated by UVB in human melanocytes lead to the increased expression of melanocyte receptors, endothelin B receptor and c-KIT. Photochem Photobiol 94(3):421–431

    Article  CAS  PubMed  Google Scholar 

  2. Joshi PG, Nair N, Begum G, Joshi NB, Sinkar VP, Vora S (2007) Melanocyte–keratinocyte interaction induces calcium signalling and melanin transfer to keratinocytes. Pigment Cell Melanoma Res 20(5):380–384

    CAS  Google Scholar 

  3. Arck PC, Overall R, Spatz K, Liezman C, Handjiski B, Klapp BF, Birch-Machin MA, Peters EMJ (2006) Towards a “free radical theory of graying”: melanocyte apoptosis in the aging human hair follicle is an indicator of oxidative stress induced tissue damage. FASEB J 20(9):1567–1569

    Article  CAS  PubMed  Google Scholar 

  4. Nakeenopakun Y, Chaiyawatthanananth P, Itharat A (2017) Determination of free radical protective activity from hydrogen peroxide, antioxidant and melanogenesis stimulating activities of Eclipta prostrate Linn. and Sapindus rarak DC. for Hair Dye Product. J Med Assoc Thail 100(6):192

    Google Scholar 

  5. Poprac P, Jomova K, Simunkova M, Kollar V, Rhodes CJ, Valko M (2017) Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol Sci 38(7):592–607

    Article  CAS  PubMed  Google Scholar 

  6. Wood JM, Decker H, Hartmann H, Chavan B, Rokos H, Spencer J, Hasse S, Thornton MJ, Shalbaf M, Paus R (2009) Senile hair graying: H2O2-mediated oxidative stress affects human hair color by blunting methionine sulfoxide repair. FASEB J 23(7):2065–2075

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Z, Li C, Li K, Wang T, Zhang B, Gao T (2009) Decreased methionine sulphoxide reductase A expression renders melanocytes more sensitive to oxidative stress: a possible cause for melanocyte loss in vitiligo. Br J Dermatol 161(3):504–509

    Article  CAS  PubMed  Google Scholar 

  8. Jian Z, Li K, Song P, Zhu G, Zhu L, Cui T, Liu B, Tang L, Wang X, Wang G (2014) Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: a possible mechanism for melanocyte degeneration in vitiligo. J Invest Dermatol 134(8):2221–2230

    Article  CAS  PubMed  Google Scholar 

  9. Boissy RE, Manga P (2004) On the etiology of contact/occupational vitiligo. Pigment Cell Melanoma Res 17(3):208–214

    Article  CAS  Google Scholar 

  10. Haslam IS, Jadkauskaite L, Szabó IL, Staege S, Hesebeck-Brinckmann J, Jenkins G, Bhogal RK, Lim F-L, Farjo N, Farjo B (2017) Oxidative damage control in a human (mini-) organ: Nrf2 activation protects against oxidative stress-induced hair growth inhibition. J Invest Dermatol 137(2):295–304

    Article  CAS  PubMed  Google Scholar 

  11. Nagata H, Takekoshi S, Takeyama R, Homma T, Yoshiyuki Osamura R (2004) Quercetin enhances melanogenesis by increasing the activity and synthesis of tyrosinase in human melanoma cells and in normal human melanocytes. Pigment Cell Melanoma Res 17(1):66–73

    Article  CAS  Google Scholar 

  12. Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 119(2):203–210

    Article  CAS  PubMed  Google Scholar 

  13. Tsuboi T, Kondoh H, Hiratsuka J, Mishima Y (1998) Enhanced melanogenesis induced by tyrosinase gene-transfer increases boron-uptake and killing effect of boron neutron capture therapy for amelanotic melanoma. Pigment Cell Melanoma Res 11(5):275–282

    Article  CAS  Google Scholar 

  14. Chung S-Y, Seo Y-K, Park J-M, Seo M-J, Park J-K, Kim J-W, Park C-S (2009) Fermented rice bran downregulates MITF expression and leads to inhibition of α-MSH-induced melanogenesis in B16F1 melanoma. Biosci Biotechnol Biochem 73(8):1704–1710

    Article  CAS  PubMed  Google Scholar 

  15. Yang S-G, Wang W-Y, Ling T-J, Feng Y, Du X-T, Zhang X, Sun X-X, Zhao M, Xue D, Yang Y (2010) Alpha-tocopherol quinone inhibits beta-amyloid aggregation and cytotoxicity, disaggregates preformed fibrils and decreases the production of reactive oxygen species, NO and inflammatory cytokines. Neurochem Int 57(8):914–922

    Article  CAS  PubMed  Google Scholar 

  16. Tobin DJ, Paus R (2001) Graying: gerontobiology of the hair follicle pigmentary unit. Exp Gerontol 36(1):29–54

    Article  CAS  PubMed  Google Scholar 

  17. Borodkina A, Shatrova A, Abushik P, Nikolsky N, Burova E (2014) Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging 6(6):481

    Article  PubMed  PubMed Central  Google Scholar 

  18. D’Mello SA, Finlay GJ, Baguley BC, Askarian-Amiri ME (2016) Signaling pathways in melanogenesis. Int J Mol Sci 17(7):1144

    Article  CAS  PubMed Central  Google Scholar 

  19. Levy C, Khaled M, Fisher DE (2006) MITF: master regulator of melanocyte development and melanoma oncogene. Trends Mol Med 12(9):406–414

    Article  CAS  PubMed  Google Scholar 

  20. Commo S, Gaillard O, Bernard B (2004) Human hair greying is linked to a specific depletion of hair follicle melanocytes affecting both the bulb and the outer root sheath. Br J Dermatol 150(3):435–443

    Article  CAS  PubMed  Google Scholar 

  21. Diraviyam T, Radhakrishnan M, Balagurunathan R (2011) Antioxidant activity of melanin pigment from Streptomyces species D5 isolated from Desert soil, Rajasthan, India. Drug Invent Today 3(3):12–13

    CAS  Google Scholar 

  22. Hong S, Kim M-M (2018) IGFBP-3 plays an important role in senescence as an aging marker. Environ Toxicol Pharmacol 59:138–145

    Article  CAS  PubMed  Google Scholar 

  23. Dai N-T, Chang H-I, Wang Y-W, Fu K-Y, Huang T-C, Huang N-C, Li J-K, Hsieh P-S, Dai L-G, Hsu C-K (2018) Restoration of skin pigmentation after deep partial or full-thickness burn injury. Adv Drug Deliv Rev 123:155–164

    Article  CAS  PubMed  Google Scholar 

  24. Naqvi S, Martin KJ, Arthur JSC (2014) CREB phosphorylation at Ser133 regulates transcription via distinct mechanisms downstream of cAMP and MAPK signalling. Biochem J 458(3):469–479

    Article  CAS  PubMed  Google Scholar 

  25. Bandyopadhyay D, Okan NA, Bales E, Nascimento L, Cole PA, Medrano EE (2002) Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res 62(21):6231–6239

    CAS  PubMed  Google Scholar 

  26. Drira R, Sakamoto K (2016) Sakuranetin induces melanogenesis in B16BL6 melanoma cells through inhibition of ERK and PI3K/AKT signaling pathways. Phytother Res 30(6):997–1002

    Article  CAS  PubMed  Google Scholar 

  27. Price ER, Ding H-F, Badalian T, Bhattacharya S, Takemoto C, Yao T-P, Hemesath TJ, Fisher DE (1998) Lineage-specific signaling in melanocytes C-kit stimulation recruits p300/CBP to microphthalmia. J Biol Chem 273(29):17983–17986

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No.2017R1D1A3B06028000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon-Moo Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval and informed consent not required for the paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, H., Kim, MM. H2O2 promotes the aging process of melanogenesis through modulation of MITF and Nrf2. Mol Biol Rep 46, 2461–2471 (2019). https://doi.org/10.1007/s11033-019-04708-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04708-8

Keywords

Navigation