Skip to main content

Advertisement

Log in

Comparative RNA editing profile of mitochondrial transcripts in cytoplasmic male sterile and fertile pigeonpea reveal significant changes at the protein level

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

RNA editing is a process which leads to post-transcriptional alteration of the nucleotide sequence of the corresponding mRNA molecule which may or may not lead to changes at the protein level. Apart from its role in providing variability at the transcript and protein levels, sometimes, such changes may lead to abnormal expression of the mitochondrial gene leading to a cytoplasmic male sterile phenotype. Here we report the editing status of 20 major mitochondrial transcripts in both male sterile (AKCMS11) and male fertile (AKPR303) pigeonpea genotypes. The validation of the predicted editing sites was done by mapping RNA-seq reads onto the amplified mitochondrial genes, and 165 and 159 editing sites were observed in bud tissues of the male sterile and fertile plant respectively. Among the resulting amino acid alterations, the most frequent one was the conversion of hydrophilic amino acids to hydrophobic. The alterations thus detected in our study indicates differential editing, but no major change in terms of the abnormal protein structure was detected. However, the above investigation provides an insight into the behaviour of pigeonpea mitochondrial genome in native and alloplasmic state and could hold clues in identification of editing factors and their role in adaptive evolution in pigeonpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. http://prep.unl.edu/

  2. https://www.biogem.org/tool/chou-fasman/

  3. https://phobius.sbc.su.se/

  4. https://www.sbg.bio.ic.ac.uk/maxcluster/

References

  1. Knoop V (2013) Plant mitochondrial genome peculiarities evolving in the earliest vascular plant lineages. J Syst Evol 51:1–12

    Article  Google Scholar 

  2. Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL, Song K (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci USA 97(13):6960–6966. https://doi.org/10.1073/pnas.97.13.6960

    Article  CAS  PubMed  Google Scholar 

  3. Gualberto JM, Mileshina D, Wallet C, Niazi AK, Weber-Lotfi F, Dietrich A (2014) The plant mitochondrial genome: dynamics and maintenance. Biochimie 100(1), 107–120. https://doi.org/10.1016/j.biochi.2013.09.016

    Article  CAS  PubMed  Google Scholar 

  4. Marienfeld J, Unseld M, Brennicke A (1999) The mitochondrial genome of Arabidopsis is composed of both native and immigrant information. Trends Plant Sci 4:495–502. https://doi.org/10.1016/S1360-1385(99)01502-2

    Article  CAS  PubMed  Google Scholar 

  5. Levings iii CS, Brown GG (1989) Molecular biology of plant mitochondria. Cell 56:171–179. https://doi.org/10.1016/0092-8674(89)90890-8

    Article  Google Scholar 

  6. Zhang T, Fang Y, Wang X, Deng X, Zhang X, Hu S (2012) The complete chloroplast and mitochondrial genome sequences of boea hygrometrica: insights into the evolution of plant organellar genomes. PLoS ONE 7(1):e30531. https://doi.org/10.1371/journal.pone.0030531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gott JM (2003) Expanding genome capacity via RNA editing. C R Biol 326:901–908

    Article  CAS  Google Scholar 

  8. Mallela A, Nishikura K (2012) A-to-I editing of protein coding and noncoding RNAs. Crit Rev Biochem Mol Biol 47:493–501

    Article  CAS  Google Scholar 

  9. Mahendran R, Spottswood MR, Miller DL (1991) RNA editing by cytidine insertion in mitochondria of Physarum polvcephalum. Nature 349:434–438

    Article  CAS  Google Scholar 

  10. Cattaneo R, Kaelin K, Baczko K, Billeter MA (1989) Measles virus editing provides an additional cysteine-rich protein. Cell 56(5):759–764. https://doi.org/10.1016/0092-8674(89)90679-X

    Article  CAS  PubMed  Google Scholar 

  11. Benne R, van den Burg J, Brakenhoff JP (1986) Major transcript of the frame shifted coxll gene from trypanosome mitochondria contains four nucleotides that are not encoded in the DNA. Cell 46:819–826

    Article  CAS  Google Scholar 

  12. Covello PS, Gray MW (1989) RNA editing in plant mitochondria. Nature 341:662–666

    Article  CAS  Google Scholar 

  13. Gualberto JM, Lamattina L, Bonnard G, Weil JH, Grienenberger JM (1989) RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341(6243):660–662. https://doi.org/10.1038/341660a0

    Article  CAS  PubMed  Google Scholar 

  14. Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) RNA editing in plant mitochondria. Science 246(4937):1632–1634. https://doi.org/10.1126/science.2480644

    Article  CAS  PubMed  Google Scholar 

  15. Begu D, Graves PV, Domec C, Arselin G, Litvak S, Araya A (1990) RNA editing of wheat mitochoodrial ATP synthase subunit 9: direct protein and cDNA sequencing. Plant Cell 2:1238–1290

    Google Scholar 

  16. Graves PV, Begu D, Velours J, Neau E, Belloc F, Litvak S, Araya A (1990) Direct protein sequencing of wheat mitochondrial ATP synthase subunit 9 confirms RNA editing in plants. J Mol Biol 214:1–6

    Article  CAS  Google Scholar 

  17. Takenaka M, Zehrmann A, Verbitskiy D, Härtel B, Brennicke A (2013) RNA editing in plants and its evolution. Annu Rev Genet 47(1):335–352. https://doi.org/10.1146/annurev-genet-111212-133519

    Article  CAS  PubMed  Google Scholar 

  18. Mower JP, Palmer JD (2006) Patterns of partial RNA editing in mitochondrial genes of Beta vulgaris. Mol Gen Genom 276:285–293

    Article  CAS  Google Scholar 

  19. Giegé P, Brennicke A (1999) RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci USA 96:15324–15329. https://doi.org/10.1073/pnas.96.26.15324

    Article  PubMed  Google Scholar 

  20. Castandet B, Choury D, Bégu D, Jordana X, Araya A (2010) Intron RNA editing is essential for splicing in plant mitochondria. Nucleic Acids Res 38(20):7112–7121. https://doi.org/10.1093/nar/gkq591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genom 268(4):434–445. https://doi.org/10.1007/s00438-002-0767-1

    Article  CAS  Google Scholar 

  22. Bentolila S, Oh J, Hanson MR, Bukowski R (2013) Comprehensive high-resolution analysis of the role of an Arabidopsis gene family in RNA editing. PLoS Genet 9(6):e1003584. https://doi.org/10.1371/journal.pgen.1003584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ichinose M, Sugita M (2017) RNA editing and its molecular mechanism in plant organelles. Genes 8:5. https://doi.org/10.3390/genes8010005

    Article  CAS  Google Scholar 

  24. Tseng CC, Lee CJ, Chung YT, Sung TY, Hsieh MH (2013) Differential regulation of Arabidopsis plastid gene expression and RNA editing in non-photosynthetic tissues. Plant Mol Biol 82:375–392

    Article  CAS  Google Scholar 

  25. Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res 31:5907–5916

    Article  CAS  Google Scholar 

  26. Picardi E, Horner DS, Chiara M, Schiavon R, Valle G, Pesole G (2010) Large-scale detection and analysis of RNA editing in grape mtDNA by RNA deep-sequencing. Nucleic Acids Res 38(14):4755–4767. https://doi.org/10.1093/nar/gkq202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grimes BT, Sisay AK, Carroll HD, Cahoon AB (2014) Deep sequencing of the tobacco mitochondrial transcriptome reveals expressed ORFs and numerous editing sites outside coding regions. BMC Genom 15(1):1–10. https://doi.org/10.1186/1471-2164-15-31

    Article  Google Scholar 

  28. Okuda K, Myouga F, Motohashi R, Shinozaki K, Shikanai T (2007) Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci USA 104:8178–8183

    Article  CAS  Google Scholar 

  29. Zehrmann A, Verbitskiy D, Van Der Merwe JA, Brennicke A, Takenaka M (2009) A DYW domain-containing pentatricopeptide repeat protein is required for RNA editing at multiple sites in mitochondria of Arabidopsis thaliana. Plant Cell 21:558–567

    Article  CAS  Google Scholar 

  30. Aubourg S, Boudet N, Kreis M, Lecharny A (2000) In Arabidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants. Plant Mol Biol 42:603–613. https://doi.org/10.1023/A:1006352315928

    Article  CAS  PubMed  Google Scholar 

  31. Small ID, Peeters N (2000) The PPR motif–a TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci 25(99):45–47. https://doi.org/10.1016/S0968-0004)01520-0.

    Article  Google Scholar 

  32. Fujii S, Small I (2011) The evolution of RNA editing and pentatricopeptide repeat genes. N Phytol 191:37–47

    Article  CAS  Google Scholar 

  33. Shikanai T (2015) RNA editing in plants: machinery and flexibility of site recognition. Biochim Biophys Acta 1847:779–785

    Article  CAS  Google Scholar 

  34. Schallenberg-Rüdinger M, Knoop V (2016) Coevolution of organelle RNA editing and nuclear specificity factors in early land plants. Adv Bot Res 78:1–57

    Google Scholar 

  35. Sun T, Bentolila S, Hanson M (2016) The unexpected diversity of plant organelle RNA editosomes. Trends Plant Sci 21:962–973

    Article  CAS  Google Scholar 

  36. Kim SR, Yang JI, Moon S, Ryu CH, An K, Kim KM, Yim J, An G (2009) Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria. Plant J 59:738–749. https://doi.org/10.1111/j.1365-313X.2009.03909.x

    Article  CAS  PubMed  Google Scholar 

  37. Laser KD, Lersten NR (1972) Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot Rev 38, 425–454. https://doi.org/10.1007/BF02860010

    Article  Google Scholar 

  38. Small ID, Rackham O, Filipovska A (2013) Organelle transcriptomes: products of a deconstructed genome. Curr Opin Microbiol 16:652e658

    Article  Google Scholar 

  39. Chase CD (2007) Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet 23:81e90

    Article  Google Scholar 

  40. Bentolila S, Alfonso AA, Hanson MR (2002) A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA 99:10887–10892

    Article  Google Scholar 

  41. Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J et al (2006) Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Agriculture 18:676–687. https://doi.org/10.1105/tpc.105.038240.2

    Article  CAS  Google Scholar 

  42. Dahan J, Mireau H (2013) The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes. RNA Biol 10:1469e1476

    Article  Google Scholar 

  43. Uyttewaal M, Arnal N, Quadrado M, Martin-Canadell A, Vrielynck N, Hiard S, Gherbi H, Bendahmane A, Budar F, Mireau H (2008) Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for ogura cytoplasmic male sterility. Plant Cell Online 20(12):3331–3345. https://doi.org/10.1105/tpc.107.057208

    Article  CAS  Google Scholar 

  44. Iwabuchi M, Kyozuka J, Shimamoto K (1993) Processing followed by complete editing of an altered mitochondrial atp6 RNA restores fertility of cytoplasmic male-sterile rice. EMBO J 12:1437–1446

    Article  CAS  Google Scholar 

  45. Araya A, Bégu D, Litvak S (1994) RNA editing in plants. Physiol Plant 91:543–550

    Article  CAS  Google Scholar 

  46. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24(3):133–141

    Article  CAS  Google Scholar 

  47. Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5(1):16–18. https://doi.org/10.1038/nmeth1156

    Article  CAS  PubMed  Google Scholar 

  48. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genom Hum Genet 9:387–402

    Article  CAS  Google Scholar 

  49. Bahn JH, Lee JH, Li G, Greer C, Peng G, Xiao X (2012) Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 22:142–150. https://doi.org/10.1101/gr.124107.111.142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S, Bhutani S, Dogra V, Singh BP, Kumawat G (2012) The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol 21(1):98–112. https://doi.org/10.1007/s13562-011-0088-8

    Article  PubMed  Google Scholar 

  51. Sharma D, Green JM (1980) Pigeonpea. In Fehr WR, Hadley HH (eds) Hybridization of crop plants. WI: American Society of Agronomy and Crop Science Society of America, Madison, pp 471–481

    Google Scholar 

  52. Saxena KB, Kumar RV, Rao PV (2002) Pigeonpea nutrition and its improvement. J Crop Prod 5:227–260

    Article  CAS  Google Scholar 

  53. Odeny D, Ferguson M, Hoisington DA (2007) Development characterization and utilization of microsatellite markers in pigeonpea [Cajanus cajan (L.) Millsp.]. Plant 126:130–136. https://doi.org/10.1111/j.1439-0523.2007.01324.x

    Article  CAS  Google Scholar 

  54. Bohra A, Mallikarjuna N, Saxena KB, Upadhyaya HD, Vales I, Varshney RK (2010) Harnessing the potential of crop wild relatives through genomics tools for pigeonpea improvement. J Plant Biol 37:1–16

    Google Scholar 

  55. Saxena KB, Sultana R, Mallikarjuna N, Saxena RK, Kumar RV, Sawargaonkar SL, Varshney RK (2010) Male-sterility systems in pigeonpea and their role in enhancing yield. Plant Breed 129(2):125–134. https://doi.org/10.1111/j.1439-0523.2009.01752.x

    Article  Google Scholar 

  56. Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter J, Donoghue MT, Azam S, Fan G, Whaley AM (2011) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30(1):83–89. https://doi.org/10.1038/nbt.2022

    Article  CAS  PubMed  Google Scholar 

  57. Tuteja R, Saxena RK, Davila J, Shah T, Chen W, Xiao YL, Fan G, Saxena KB, Alverson AJ, Spillane C et al (2013) Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four cajanus genotypes. DNA Res 20(5):485–495. https://doi.org/10.1093/dnares/dst025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kaila T, Chaduvla PK, Saxena S, Bahadur K, Gahukar SJ, Chaudhury A, Sharma TR, Singh NK, Gaikwad K (2016) Chloroplast genome sequence of pigeonpea (Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: genome organization and comparison with other legumes. Front Plant Sci 7:1847. https://doi.org/10.3389/fpls.2016.01847

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kemble GW, McCormick AL, Pereiram L, Mocarski ES (1987) A cytomegalovirus protein with properties of herpes simplex virus ICPS: partial purification of the polypeptide and map position of the gene. J Virol 61:3143–3151

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11–15

    Google Scholar 

  61. Mower JP (2005) PREP-Mt: predictive RNA editor for plant mitochondrial genes. BMC Bioinform 6:96

    Article  Google Scholar 

  62. Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. Biochemistry 13:211–222. https://doi.org/10.1021/bi00699a001

    Article  CAS  PubMed  Google Scholar 

  63. Chou PY, Fasman GD (1974) Prediction of protein conformation. Biochemistry 13:222–245. https://doi.org/10.1021/bi00699a002

    Article  CAS  PubMed  Google Scholar 

  64. Käll L, Krogh A, Sonnhammer ELL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338:1027–1036. https://doi.org/10.1016/j.jmb.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  65. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  Google Scholar 

  66. The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC

  67. Takenaka M, Brennicke A (2007) RNA editing in plant mitochondria: assays and biochemical approaches. Methods Enzymol 424:439–458

    Article  CAS  Google Scholar 

  68. Kazakoff SH, Imelfort M, Edwards D, Koehorst J, Biswas B, Batley J, Scott PT, Gresshoff PM (2012) Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata. PLoS ONE 7:1–12. https://doi.org/10.1371/journal.pone.0051687

    Article  CAS  Google Scholar 

  69. Suzuki H, Yu J, Ness SA, O’Connell MA, Zhang J (2013) RNA editing events in mitochondrial genes by ultra-deep sequencing methods: a comparison of cytoplasmic male sterile, fertile and restored genotypes in cotton. Mol Genet Genom 288(9):445–457. https://doi.org/10.1007/s00438-013-0764-6

    Article  CAS  Google Scholar 

  70. Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T (2000) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNACys(GCA). Nucleic Acids Res 28(13):2571–2576. https://doi.org/10.1093/nar/28.13.2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Salmans ML, Chaw SM, Lin CP, Shih AC, Wu YW, Mulligan RM (2010) Editing site analysis in a gymnosperm mitochondrial genome reveals similarities with angiosperm mitochondrial genomes. Curr Genet 56:439–446

    Article  CAS  Google Scholar 

  72. Lu B, Hanson MRR (1994) A single homogeneous form of ATP6 protein accumulates in petunia mitochondria despite the presence of differentially edited atp6 transcripts. Plant Cell 6:1955–1968. https://doi.org/10.1105/tpc.6.12.1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57–61

    Article  CAS  Google Scholar 

  74. Fang Y, Wu H, Zhang T, Yang M, Yin Y, Pan L, Yu X, Zhang X, Hu S, Al-Mssallem IS et al (2012) A complete sequence and transcriptomic analyses of date palm (Phoenix dactylifera L.) mitochondrial genome. PLoS ONE 7(5):e37164. https://doi.org/10.1371/journal.pone.0037164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yura K, Go M (2008) Correlation between amino acid residues converted by RNA editing and functional residues in protein three-dimensional structures in plant organelles. BMC Plant Biol 8:1–11. https://doi.org/10.1186/1471-2229-8-79

    Article  CAS  Google Scholar 

  76. Mungpakdee S, Shinzato C, Takeuchi T, Kawashima T, Koyanagi R, Hisata K, Tanaka M, Goto H, Fujie M, Lin S et al (2014) Massive gene transfer and extensive rna editing of a symbiotic dinoflagellate plastid genome. Genome Biol Evol 6(6):1408–1422. https://doi.org/10.1093/gbe/evu109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moreira S, Valach M, Aoulad-Aissa M, Otto C, Burger G (2016) Novel modes of RNA editing in mitochondria. Nucleic Acids Res 44:4907–4919. https://doi.org/10.1093/nar/gkw188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yan C, Wu F, Jernigan RL, Dobbs D, Honavar V (2008) Characterization of protein–protein interfaces. Protein J 27(1):59–70. https://doi.org/10.1007/s10930-007-9108-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Begu D, Graves PV, Domec C, Arselin G, Litvak S, Araya A (1990) RNA editing of wheat mitochondrial ATP synthase subunit 9: direct protein and cDNA sequencing. Plant Cell 2:1238–1290

    Google Scholar 

  80. Kurek I, Ezra D, Begu D, Erel N, Litvak S, Breiman A (1997) Studies on the effects of nuclear background and tissue specificity on RNA editing of the mitochondrial ATP synthase subunits a, 6 and 9 in fertile and cytoplasmic male-sterile (CMS) wheat. Theor. Appl Genet 95:1305–1311

    Article  CAS  Google Scholar 

  81. Tang HV, Chen W, Pring DR (1999) Mitochondrial orf107 transcription, editing, and nucleolytic cleavage conferred by the gene Rf3 are expressed in sorghum pollen. Sex Plant Reprod 12:53–55

    Article  CAS  Google Scholar 

  82. Howad W, Tang HV, Pring DR, Kempken F (1999) Nuclear genes from T × CMS maintainer lines are unable to maintain atp6 editing in any anther cell-type in the Sorghum bicolor A3 cytoplasm. Curr Genet 36:62–68

    Article  CAS  Google Scholar 

  83. Pring DR, Chen W, Tang HV, Howad W, Kempken F (1998) Interaction of mitochondrial RNA editing and nucleolytic processing in the restoration of male fertility in sorghum. Curr Genet 33:429–436

    Article  CAS  Google Scholar 

  84. Gallagher LJ, Betz SK, Chase CD (2002) Mitochondrial RNA editing truncates a chimeric open reading frame associated with S male-sterility in maize. Curr Genet 42:179–184

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support received from ICAR-National Research Centre on Plant Biotechnology, New Delhi, India.

Author information

Authors and Affiliations

Authors

Contributions

TK carried out the experiments, prepared the library for sequencing run and wrote the manuscript. SS and AT were involved in sequencing run. TK, SS, AT, KUT and HS were involved in result interpretation, data analysis and finalization of the manuscript. GR maintained the fields of pigeonpea throughout the experiment and contributed to the manuscript. S, AC, and NKS contributed in data analysis and manuscript finalisation. KG conceived the study, designed the experiments, and coordinated the work. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Kishor Gaikwad.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 680 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaila, T., Saxena, S., Ramakrishna, G. et al. Comparative RNA editing profile of mitochondrial transcripts in cytoplasmic male sterile and fertile pigeonpea reveal significant changes at the protein level. Mol Biol Rep 46, 2067–2084 (2019). https://doi.org/10.1007/s11033-019-04657-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04657-2

Keywords

Navigation