Skip to main content

Advertisement

Log in

The role of p53 status on the synergistic effect of CKD-602 and cisplatin on oral squamous cell carcinoma cell lines

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 24 August 2021

This article has been updated

Abstract

The purpose of this study was to evaluate the synergistic apoptotic effect of CKD-602 in combination with cisplatin on different p53 statuses of oral squamous cell carcinoma (OSCC) cell lines, YD-8, YD-9, and YD-38. MTT assays were used to evaluate the inhibitory effect of the treatments modality on cell growth. The combination index was calculated using CompuSyn software. Detection of cell death was carried out using the propidium iodide (PI)/RNase staining assay, Annexin V/PI double staining assay, and Western blotting. Combination treatment using CKD-602 and cisplatin inhibited proliferation and increased the apoptotic effect on the three OSCC cell lines. Apoptotic cell death was detected in the cell lines, and significant synergistic effects of CKD-602 in combination with cisplatin were observed despite the differences in p53 status. From these results, it was suggested that the combination of CKD-602 with cisplatin might be a potential therapeutic strategy for OSCC. In particular, cell line-specific therapy is necessary because of the differences in treatment response based on p53 status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  1. Korea Central Cancer Registry NCC (2016) Annual report of cancer statistics in Korea in 2014. Ministry of Health and Welfare

  2. Dumache R (2017) Early diagnosis of oral squamous cell carcinoma by salivary microRNAs. Clin Lab 63(11):1771–1776. https://doi.org/10.7754/Clin.Lab.2017.170607

    Article  CAS  PubMed  Google Scholar 

  3. Li CC, Shen Z, Bavarian R, Yang F, Bhattacharya A (2018) Oral cancer: genetics and the role of precision medicine. Dent Clin N Am 62(1):29–46. https://doi.org/10.1016/j.cden.2017.08.002

    Article  PubMed  Google Scholar 

  4. Levi LE, Lalla RV (2018) Dental treatment planning for the patient with oral cancer. Dent Clin N Am 62(1):121–130. https://doi.org/10.1016/j.cden.2017.08.009

    Article  PubMed  Google Scholar 

  5. Villa A, Akintoye SO (2018) Dental management of patients who have undergone oral cancer therapy. Dent Clin N Am 62(1):131–142. https://doi.org/10.1016/j.cden.2017.08.010

    Article  PubMed  Google Scholar 

  6. Bundela S, Sharma A, Bisen PS (2015) Potential compounds for oral cancer treatment: resveratrol, nimbolide, lovastatin, bortezomib, vorinostat, berberine, pterostilbene, deguelin, andrographolide, and colchicine. PLoS ONE 10(11):e0141719. https://doi.org/10.1371/journal.pone.0141719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jo DW, Kim YK, Yun PY (2016) The influence of p53 mutation status on the anti-cancer effect of cisplatin in oral squamous cell carcinoma cell lines. J Korean Assoc Oral Maxillofac Surg 42(6):337–344. https://doi.org/10.5125/jkaoms.2016.42.6.337

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cohen SM, Lippard SJ (2001) Cisplatin: from DNA damage to cancer chemotherapy. Prog Nucleic Acid Res Mol Biol 67:93–130

    Article  CAS  PubMed  Google Scholar 

  9. Qi X, Xu W, Xie J, Wang Y, Han S, Wei Z, Ni Y, Dong Y, Han W (2016) Metformin sensitizes the response of oral squamous cell carcinoma to cisplatin treatment through inhibition of NF-kappaB/HIF-1alpha signal axis. Sci Rep 6:35788. https://doi.org/10.1038/srep35788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Williams CJ, Whitehouse JM (1979) Cis-platinum: a new anticancer agent. Br Med J 1(6179):1689–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Von Hoff DD, Schilsky R, Reichert CM, Reddick RL, Rozencweig M, Young RC, Muggia FM (1979) Toxic effects of cis-dichlorodiammineplatinum (II) in man. Cancer Treat Rep 63(9–10):1527–1531

    Google Scholar 

  12. Tanaka T, Masuda H, Naito M, Tamai H (2001) Pretreatment with 5-fluorouracil enhances cytotoxicity and retention of DNA-bound platinum in a cisplatin resistant human ovarian cancer cell line. Anticancer Res 21(4a):2463–2469

    CAS  PubMed  Google Scholar 

  13. Chen S, Hu H, Miao S, Zheng J, Xie Z, Zhao H (2017) Anti-tumor effect of cisplatin in human oral squamous cell carcinoma was enhanced by andrographolide via upregulation of phospho-p53 in vitro and in vivo. Tumour Biol 39(5):1010428317705330. https://doi.org/10.1177/1010428317705330

    Article  CAS  PubMed  Google Scholar 

  14. Crul M (2003) CKD-602. Chong Kun Dang. Curr Opin Investig Drugs (Lond, Engl: 2000) 4(12):1455–1459

    CAS  Google Scholar 

  15. Liu YQ, Li WQ, Morris-Natschke SL, Qian K, Yang L, Zhu GX, Wu XB, Chen AL, Zhang SY, Nan X, Lee KH (2015) Perspectives on biologically active camptothecin derivatives. Med Res Rev 35(4):753–789. https://doi.org/10.1002/med.21342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ok YJ, Myoung H, Kim YK, Lee JH, Kim MJ, Yun PY (2009) Apoptotic effect of CKD-602 (Camtobell) on oral squamous cell carcinoma cell lines. Oral Oncol 45(3):266–272. https://doi.org/10.1016/j.oraloncology.2008.05.001

    Article  CAS  PubMed  Google Scholar 

  17. Kim YK, Koo NY, Yun PY (2015) Anticancer effects of CKD-602 (Camtobell (R)) via G2/M phase arrest in oral squamous cell carcinoma cell lines. Oncol Lett 9(1):136–142. https://doi.org/10.3892/ol.2014.2648

    Article  PubMed  Google Scholar 

  18. Lee JH, Lee JM, Kim JK, Ahn SK, Lee SJ, Kim MY, Jew SS, Park JG, Hong CI (1998) Antitumor activity of 7-[2-(N-isopropylamino)ethyl]-(20S)-camptothecin, CKD602, as a potent DNA topoisomerase I inhibitor. Arch Pharm Res 21(5):581–590

    Article  CAS  PubMed  Google Scholar 

  19. Lim S, Cho BC, Jung JY, Kim GM, Kim SH, Kim HR, Kim HS, Lim SM, Park JS, Lee JH, Kim D, Kim EY, Park MS, Kim YS, Kim SK, Chang J, Kim JH (2013) Phase II study of camtobell inj. (belotecan) in combination with cisplatin in patients with previously untreated, extensive stage small cell lung cancer. Lung Cancer (Amst Neth) 80(3):313–318. https://doi.org/10.1016/j.lungcan.2013.02.009

    Article  Google Scholar 

  20. Hong J, Jung M, Kim YJ, Sym SJ, Kyung SY, Park J, Lee SP, Park JW, Cho EK, Jeong SH, Shin DB, Lee JH (2012) Phase II study of combined belotecan and cisplatin as first-line chemotherapy in patients with extensive disease of small cell lung cancer. Cancer Chemother Pharmacol 69(1):215–220. https://doi.org/10.1007/s00280-011-1689-6

    Article  CAS  PubMed  Google Scholar 

  21. Chan BA, Coward JI (2013) Chemotherapy advances in small-cell lung cancer. J Thorac Dis 5(Suppl 5):S565–S578. https://doi.org/10.3978/j.issn.2072-1439.2013.07.43

    Article  PubMed  PubMed Central  Google Scholar 

  22. O’Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, Scudiero DA, Monks A, Sausville EA, Weinstein JN, Friend S, Fornace AJ Jr, Kohn KW (1997) Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res 57(19):4285–4300

    PubMed  Google Scholar 

  23. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M, Kroemer G (2012) Molecular mechanisms of cisplatin resistance. Oncogene 31(15):1869–1883. https://doi.org/10.1038/onc.2011.384

    Article  CAS  PubMed  Google Scholar 

  24. Cutilli T, Leocata P, Dolo V, Altobelli E (2013) Evaluation of p53 protein as a prognostic factor for oral cancer surgery. Br J Oral Maxillofac Surg 51(8):922–927. https://doi.org/10.1016/j.bjoms.2013.05.150

    Article  PubMed  Google Scholar 

  25. Branch P, Masson M, Aquilina G, Bignami M, Karran P (2000) Spontaneous development of drug resistance: mismatch repair and p53 defects in resistance to cisplatin in human tumor cells. Oncogene 19(28):3138–3145. https://doi.org/10.1038/sj.onc.1203668

    Article  CAS  PubMed  Google Scholar 

  26. Bradford CR, Zhu S, Ogawa H, Ogawa T, Ubell M, Narayan A, Johnson G, Wolf GT, Fisher SG, Carey TE (2003) p53 mutation correlates with cisplatin sensitivity in head and neck squamous cell carcinoma lines. Head Neck 25(8):654–661. https://doi.org/10.1002/hed.10274

    Article  PubMed  Google Scholar 

  27. Tao H, Zhu Y, Wang H, Lai B, Zhang C, Zhan X, Wang Y, Yang X, Yue W, Zhang H (2008) [Effects of p53 gene on drug resistance in human lung cancer cell lines]. Zhongguo fei ai za zhi = Chinese. J Lung Cancer 11(2):157–164. https://doi.org/10.3779/j.issn.1009-3419.2008.02.001

    Article  CAS  Google Scholar 

  28. Dart DA, Picksley SM, Cooper PA, Double JA, Bibby MC (2004) The role of p53 in the chemotherapeutic responses to cisplatin, doxorubicin and 5-fluorouracil treatment. Int J Oncol 24(1):115–125

    CAS  PubMed  Google Scholar 

  29. Andrews GA, Xi S, Pomerantz RG, Lin CJ, Gooding WE, Wentzel AL, Wu L, Sidransky D, Grandis JR (2004) Mutation of p53 in head and neck squamous cell carcinoma correlates with Bcl-2 expression and increased susceptibility to cisplatin-induced apoptosis. Head Neck 26(10):870–877. https://doi.org/10.1002/hed.20029

    Article  PubMed  Google Scholar 

  30. Bradford CR, Zhu S, Poore J, Fisher SG, Beals TF, Thoraval D, Hanash SM, Carey TE, Wolf GT (1997) p53 mutation as a prognostic marker in advanced laryngeal carcinoma. Department of veterans affairs laryngeal cancer cooperative study group. Arch Otolaryngol—Head Neck Surg 123(6):605–609

    Article  CAS  PubMed  Google Scholar 

  31. Lee EJ, Kim J, Lee SA, Kim EJ, Chun YC, Ryu MH, Yook JI (2005) Characterization of newly established oral cancer cell lines derived from six squamous cell carcinoma and two mucoepidermoid carcinoma cells. Exp Mol Med 37(5):379–390. https://doi.org/10.1038/emm.2005.48

    Article  CAS  PubMed  Google Scholar 

  32. Piaskowski S, Zawlik I, Szybka M, Kulczycka-Wojdala D, Stoczynska-Fidelus E, Bienkowski M, Robak T, Kusinska R, Jesionek-Kupnicka D, Kordek R, Rieske P, Liberski PP (2010) Detection of p53 mutations in different cancer types is improved by cDNA sequencing. Oncol Lett 1(4):717–721. https://doi.org/10.3892/ol_00000125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70(2):440–446. https://doi.org/10.1158/0008-5472.can-09-1947

    Article  CAS  PubMed  Google Scholar 

  34. Foucquier J, Guedj M (2015) Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect 3(3):e00149. https://doi.org/10.1002/prp2.149

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wiman KG (2006) Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ 13(6):921–926. https://doi.org/10.1038/sj.cdd.4401921

    Article  CAS  PubMed  Google Scholar 

  36. Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13(6):994–1002. https://doi.org/10.1038/sj.cdd.4401908

    Article  CAS  PubMed  Google Scholar 

  37. Miyashita T, Reed JC (1992) bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res 52(19):5407–5411

    CAS  PubMed  Google Scholar 

  38. Kobayashi T, Ruan S, Clodi K, Kliche KO, Shiku H, Andreeff M, Zhang W (1998) Overexpression of Bax gene sensitizes K562 erythroleukemia cells to apoptosis induced by selective chemotherapeutic agents. Oncogene 16(12):1587–1591. https://doi.org/10.1038/sj.onc.1201681

    Article  CAS  PubMed  Google Scholar 

  39. Guo B, Cao S, Toth K, Azrak RG, Rustum YM (2000) Overexpression of Bax enhances antitumor activity of chemotherapeutic agents in human head and neck squamous cell carcinoma. Clin Cancer Res 6(2):718–724

    CAS  PubMed  Google Scholar 

  40. Choi WS, Lee EH, Chung CW, Jung YK, Jin BK, Kim SU, Oh TH, Saido TC, Oh YJ (2001) Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells: protective role of Bcl-2. J Neurochem 77(6):1531–1541

    Article  CAS  PubMed  Google Scholar 

  41. Wood DE, Thomas A, Devi LA, Berman Y, Beavis RC, Reed JC, Newcomb EW (1998) Bax cleavage is mediated by calpain during drug-induced apoptosis. Oncogene 17(9):1069–1078. https://doi.org/10.1038/sj.onc.1202034

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the SNUBH Research Fund (Grant No. 02-2014-018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pil-Young Yun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest related to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, H.S., Kim, YK. & Yun, PY. The role of p53 status on the synergistic effect of CKD-602 and cisplatin on oral squamous cell carcinoma cell lines. Mol Biol Rep 46, 617–625 (2019). https://doi.org/10.1007/s11033-018-4517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4517-9

Keywords

Navigation