Skip to main content

Advertisement

Log in

Demyelination induces transport of ribosome-containing vesicles from glia to axons: evidence from animal models and MS patient brains

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Glial cells were previously proven capable of trafficking polyribosomes to injured axons. However, the occurrence of such transfer in the general pathological context, such as demyelination-related diseases, needs further evidence. Since this may be a yet unidentified universal contributor to axonal survival, we study putative glia–axonal ribosome transport in response to demyelination in animal models and patients in both peripheral and central nervous system. In the PNS we investigate whether demyelination in a rodent model has the potential to induce ribosome transfer. We also probe the glia–axonal ribosome supply by implantation of transgenic Schwann cells engineered to produce fluorescent ribosomes in the same demyelination model. We furthermore examine the presence of axonal ribosomes in mouse experimental autoimmune encephalomyelitis (EAE), a well-established model for multiple sclerosis (MS), and in human MS autopsy brain material. We provide evidence for increased axonal ribosome content in a pharmacologically demyelinated sciatic nerve, and demonstrate that at least part of these ribosomes originate in the transgenic Schwann cells. In the CNS one of the hallmarks of MS is demyelination, which is associated with severe disruption of oligodendrocyte–axon interaction. Here, we provide evidence that axons from spinal cords of EAE mice, and in the MS human brain contain an elevated amount of axonal ribosomes compared to controls. Our data provide evidence that increased axonal ribosome content in pathological axons is at least partly due to glia-to-axon transfer of ribosomes, and that demyelination in the PNS and in the CNS is one of the triggers capable to initiate this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Twiss JL, van Minnen J (2006) New insights into neuronal regeneration: the role of axonal protein synthesis in pathfinding and axonal extension. J Neurotrauma 23:295–308

    Article  PubMed  Google Scholar 

  2. Giuditta A, Chun JT, Eyman M, Cefaliello C, Bruno AP, Crispino M (2008) Local gene expression in axons and nerve endings: the glia–neuron unit. Physiol Rev 88:515–555

    Article  CAS  PubMed  Google Scholar 

  3. Willis D, Li KW, Zheng JQ, Chang JH, Smit AB, Kelly T, Merianda TT, Sylvester J, van Minnen J, Twiss JL (2005) Differential transport and local translation of cytoskeletal, injury-response, and neurodegeneration protein mRNAs in axons. J Neurosci 25:778–791

    Article  CAS  PubMed  Google Scholar 

  4. Perry RB, Fainzilber M (2014) Local translation in neuronal processes—in vivo tests of a “heretical hypothesis”. Dev Neurobiol 74:210–217

    Article  CAS  PubMed  Google Scholar 

  5. Sotelo JR, Canclini L, Kun A, Sotelo-Silveira JR, Calliari A, Cal K, Bresque M, Dipaolo A, Farias J, Mercer JA (2014) Glia to axon RNA transfer. Dev Neurobiol 74:292–302

    Article  CAS  PubMed  Google Scholar 

  6. Court FA, Hendriks WT, MacGillavry HD, Alvarez J, van Minnen J (2008) Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system. J Neurosci 28:11024–11029

    Article  CAS  PubMed  Google Scholar 

  7. Court FA, Midha R, Cisterna BA, Grochmal J, Shakhbazau A, Hendriks WT, van Minnen J (2011) Morphological evidence for a transport of ribosomes from Schwann cells to regenerating axons. Glia 59:1529–1539

    Article  PubMed  Google Scholar 

  8. Twiss JL, Fainzilber M (2009) Ribosomes in axons—scrounging from the neighbors? Trends Cell Biol 19:236–243

    Article  CAS  PubMed  Google Scholar 

  9. Lopez-Verrilli MA, Court FA (2012) Transfer of vesicles from schwann cells to axons: a novel mechanism of communication in the peripheral nervous system. Front Physiol 3:205

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lopez-Verrilli MA, Picou F, Court FA (2013) Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia 61:1795–1806

    Article  PubMed  Google Scholar 

  11. Komiyama T, Nakao Y, Toyama Y, Asou H, Vacanti CA, Vacanti MP (2003) A novel technique to isolate adult Schwann cells for an artificial nerve conduit. J Neurosci Methods 122:195–200

    Article  PubMed  Google Scholar 

  12. Shakhbazau A, Martinez JA, Xu QG, Kawasoe J, van Minnen J, Midha R (2012) Evidence for a systemic regulation of neurotrophin synthesis in response to peripheral nerve injury. J Neurochem 122:501–511

    Article  CAS  PubMed  Google Scholar 

  13. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  CAS  PubMed  Google Scholar 

  14. Naldini L, Blomer U, Gage FH, Trono D, Verma IM (1996) Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93:11382–11388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. England JD, Rhee EK, Said G, Sumner AJ (1988) Schwann cell degeneration induced by doxorubicin (adriamycin). Brain 111(Pt 4):901–913

    Article  PubMed  Google Scholar 

  16. Mishra MK, Wang J, Silva C, Mack M, Yong VW (2012) Kinetics of proinflammatory monocytes in a model of multiple sclerosis and its perturbation by laquinimod. Am J Pathol 181:642–651

    Article  CAS  PubMed  Google Scholar 

  17. Popescu V, Klaver R, Voorn P, Galis-de Graaf Y, Knol DL, Twisk JW, Versteeg A, Schenk GJ, Van der Valk P, Barkhof F, De Vries HE, Vrenken H, Geurts JJ (2015) What drives MRI-measured cortical atrophy in multiple sclerosis? Mult Scler 21(10):1280–1290

    Article  CAS  PubMed  Google Scholar 

  18. Seewann A, Kooi EJ, Roosendaal SD, Barkhof F, van der Valk P, Geurts JJ (2009) Translating pathology in multiple sclerosis: the combination of postmortem imaging, histopathology and clinical findings. Acta Neurol Scand 119:349–355

    Article  CAS  PubMed  Google Scholar 

  19. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Court F, Alvarez J (2000) Nerve regeneration in Wld(s) mice is normalized by actinomycin D. Brain Res 867:1–8

    Article  CAS  PubMed  Google Scholar 

  21. Koenig E, Martin R, Titmus M, Sotelo-Silveira JR (2000) Cryptic peripheral ribosomal domains distributed intermittently along mammalian myelinated axons. J Neurosci 20:8390–8400

    CAS  PubMed  Google Scholar 

  22. Verheijen MH, Peviani M, Hendricusdottir R, Bell EM, Lammens M, Smit AB, Bendotti C, van Minnen J (2014) Increased axonal ribosome numbers is an early event in the pathogenesis of amyotrophic lateral sclerosis. PLoS One 9:e87255

    Article  PubMed  PubMed Central  Google Scholar 

  23. Verheijen MH, Lammens M, Ceuterick-de GC, Timmerman V, De JP, King RH, Smit AB, van Minnen J (2011) Increased axonal ribosome numbers in CMT diseases. J Peripher Nerv Syst 16:71–73

    Article  PubMed  Google Scholar 

  24. Sierra A, Abiega O, Shahraz A, Neumann H (2013) Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 7:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H (2007) TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med 4:e124

    Article  PubMed  PubMed Central  Google Scholar 

  26. Giuditta A, Chun JT, Eyman M, Cefaliello C, Bruno AP, Crispino M (2007) Axonal and presynaptic RNAs are locally transcribed in glial cells. Riv Biol 100:203–219

    PubMed  Google Scholar 

  27. Eyman M, Cefaliello C, Ferrara E, De SR, Lavina ZS, Crispino M, Squillace A, van Minnen J, Kaplan BB, Giuditta A (2007) Local synthesis of axonal and presynaptic RNA in squid model systems. Eur J Neurosci 25:341–350

    Article  PubMed  Google Scholar 

  28. Stys PK, Zamponi GW, van Minnen J, Geurts JJ (2012) Will the real multiple sclerosis please stand up? Nat Rev Neurosci 13:507–514

    Article  CAS  PubMed  Google Scholar 

  29. Stys PK (2010) Multiple sclerosis: autoimmune disease or autoimmune reaction? Can J Neurol Sci 37(Suppl 2):S16–S23

    Article  PubMed  Google Scholar 

  30. Trapp BD, Stys PK (2009) Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol 8:280–291

    Article  CAS  PubMed  Google Scholar 

  31. England JD, Gamboni F, Levinson SR (1991) Increased numbers of sodium channels form along demyelinated axons. Brain Res 548:334–337

    Article  CAS  PubMed  Google Scholar 

  32. Craner MJ, Lo AC, Black JA, Waxman SG (2003) Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination. Brain 126:1552–1561

    Article  PubMed  Google Scholar 

  33. Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG (2004) Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. Proc Natl Acad Sci USA 101:8168–8173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Craner MJ, Hains BC, Lo AC, Black JA, Waxman SG (2004) Co-localization of sodium channel Nav1.6 and the sodium–calcium exchanger at sites of axonal injury in the spinal cord in EAE. Brain 127:294–303

    Article  PubMed  Google Scholar 

  35. Bouafia A, Golmard JL, Thuries V, Sazdovitch V, Hauw JJ, Fontaine B, Seilhean D (2014) Axonal expression of sodium channels and neuropathology of the plaques in multiple sclerosis. Neuropathol Appl Neurobiol 40:579–590

    Article  CAS  PubMed  Google Scholar 

  36. Jimenez CR, Eyman M, Lavina ZS, Gioio A, Li KW, van der Schors RC, Geraerts WP, Giuditta A, Kaplan BB, van Minnen J (2002) Protein synthesis in synaptosomes: a proteomics analysis. J Neurochem 81:735–744

    Article  CAS  PubMed  Google Scholar 

  37. Kaplan BB, Lavina ZS, Gioio AE (2004) Subcellular compartmentation of neuronal protein synthesis: new insights into the biology of the neuron. Ann N Y Acad Sci 1018:244–254

    Article  CAS  PubMed  Google Scholar 

  38. Kaplan BB, Gioio AE, Hillefors M, Aschrafi A (2009) Axonal protein synthesis and the regulation of local mitochondrial function. Results Probl Cell Differ 48:225–242

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoon BC, Jung H, Dwivedy A, O’Hare CM, Zivraj KH, Holt CE (2012) Local translation of extranuclear lamin B promotes axon maintenance. Cell 148:752–764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Funfschilling U, Supplie LM, Mahad D, Boretius S, Saab AS, Edgar J, Brinkmann BG, Kassmann CM, Tzvetanova ID, Mobius W, Diaz F, Meijer D, Suter U, Hamprecht B, Sereda MW, Moraes CT, Frahm J, Goebbels S, Nave KA (2012) Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485:517–521

    PubMed  PubMed Central  Google Scholar 

  41. Hirrlinger J, Nave KA (2014) Adapting brain metabolism to myelination and long-range signal transduction. Glia 62:1749–1761

    Article  PubMed  Google Scholar 

  42. Meca-Lallana JE, Hernandez-Clares R, Carreon-Guarnizo E (2015) Spasticity in multiple sclerosis and role of glatiramer acetate treatment. Brain Behav 5:e00367

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wekerle H (2015) Nature plus nurture: the triggering of multiple sclerosis. Swiss Med Wkly 145:w14189

    PubMed  Google Scholar 

  44. Siegel SR, Mackenzie J, Chaplin G, Jablonski NG, Griffiths L (2012) Circulating microRNAs involved in multiple sclerosis. Mol Biol Rep 39:6219–6225

    Article  CAS  PubMed  Google Scholar 

  45. Song GG, Choi SJ, Ji JD, Lee YH (2013) Genome-wide pathway analysis of a genome-wide association study on multiple sclerosis. Mol Biol Rep 40:2557–2564

    Article  CAS  PubMed  Google Scholar 

  46. Xu L, Yuan W, Sun H, Zhang X, Jia X, Shen C, Zhao Y, Sun D, Yu Y, Jin Y, Fu S (2011) The polymorphisms of the TNF-α gene in multiple sclerosis?—a meta-analysis. Mol Biol Rep 38:4137–4144

    Article  CAS  PubMed  Google Scholar 

  47. Hanemann CO, Gabreels-Festen AA (2002) Secondary axon atrophy and neurological dysfunction in demyelinating neuropathies. Curr Opin Neurol 15:611–615

    Article  PubMed  Google Scholar 

  48. Hanemann CO, D’Urso D, Gabreels-Festen AA, Muller HW (2000) Mutation-dependent alteration in cellular distribution of peripheral myelin protein 22 in nerve biopsies from Charcot–Marie–Tooth type 1A. Brain 123(Pt 5):1001–1006

    Article  PubMed  Google Scholar 

  49. Muller HW, Suter U, Van BC, Hanemann CO, Nelis E, Timmerman V, Sancho S, Barrio L, Bolhuis P, Dermietzel R, Frank M, Gabreels-Festen A, Gillen C, Haites N, Levi G, Mariman E, Martini R, Nave K, Rautenstrauss B, Schachner M, Schenone A, Schneider C, Schroder M, Willecke K (1997) Advances in Charcot–Marie–Tooth disease research: cellular function of CMT-related proteins, transgenic animal models, and pathomechanisms. The European CMT Consortium. Neurobiol Dis 4:215–220

    Article  CAS  PubMed  Google Scholar 

  50. Edgar JM, McLaughlin M, Yool D, Zhang SC, Fowler JH, Montague P, Barrie JA, McCulloch MC, Duncan ID, Garbern J, Nave KA, Griffiths IR (2004) Oligodendroglial modulation of fast axonal transport in a mouse model of hereditary spastic paraplegia. J Cell Biol 166:121–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Garbern JY, Yool DA, Moore GJ, Wilds IB, Faulk MW, Klugmann M, Nave KA, Sistermans EA, van der Knaap MS, Bird TD, Shy ME, Kamholz JA, Griffiths IR (2002) Patients lacking the major CNS myelin protein, proteolipid protein 1, develop length-dependent axonal degeneration in the absence of demyelination and inflammation. Brain 125:551–561

    Article  PubMed  Google Scholar 

  52. Biernaskie JA, McKenzie IA, Toma JG, Miller FD (2006) Isolation of skin-derived precursors (SKPs) and differentiation and enrichment of their Schwann cell progeny. Nat Protoc 1:2803–2812

    Article  CAS  PubMed  Google Scholar 

  53. Khuong HT, Kumar R, Senjaya F, Grochmal J, Ivanovic A, Shakhbazau A, Forden J, Webb A, Biernaskie J, Midha R (2014) Skin derived precursor Schwann cells improve behavioral recovery for acute and delayed nerve repair. Exp Neurol 254:168–179

    Article  CAS  PubMed  Google Scholar 

  54. Shakhbazau A, Shcharbin D, Bryszewska M, Kumar R, Wobma HM, Kallos MS, Goncharova N, Seviaryn I, Kosmacheva S, Potapnev M, Midha R (2012) Non-viral engineering of skin precursor-derived Schwann cells for enhanced NT-3 production in adherent and microcarrier culture. Curr Med Chem 19:5572–5579

    Article  CAS  PubMed  Google Scholar 

  55. Shakhbazau A, Mohanty C, Kumar R, Midha R (2014) Sensory recovery after cell therapy in peripheral nerve repair: effects of naive and skin precursor-derived Schwann cells. J Neurosurg 121:423–431

    Article  PubMed  Google Scholar 

  56. Schwartz M, Yoles E (2006) Immune-based therapy for spinal cord repair: autologous macrophages and beyond. J Neurotrauma 23:360–370

    Article  PubMed  Google Scholar 

  57. Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M (1998) Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 4:814–821

    Article  CAS  PubMed  Google Scholar 

  58. Nikkhah G, Rosenthal C, Falkenstein G, Roedter A, Papazoglou A, Brandis A (2009) Microtransplantation of dopaminergic cell suspensions: further characterization and optimization of grafting parameters. Cell Transplant 18:119–133

    Article  PubMed  Google Scholar 

  59. McKenzie IA, Biernaskie J, Toma JG, Midha R, Miller FD (2006) Skin-derived precursors generate myelinating Schwann cells for the injured and dysmyelinated nervous system. J Neurosci 26:6651–6660

    Article  CAS  PubMed  Google Scholar 

  60. Shakhbazau AV, Shcharbin DG, Goncharova NV, Seviaryn IN, Kosmacheva SM, Kartel NA, Bryszewska M, Majoral JP, Potapnev MP (2011) Neurons and stromal stem cells as targets for polycation-mediated transfection. Bull Exp Biol Med 151:126–129

    Article  CAS  PubMed  Google Scholar 

  61. Grochmal J, Midha R (2014) Recent advances in stem cell-mediated peripheral nerve repair. Cells Tissues Organs 200:13–22

    Article  CAS  PubMed  Google Scholar 

  62. Shakhbazau A, Shcharbin D, Petyovka N, Goncharova N, Seviaryn I, Kosmacheva S, Bryszewska M, Potapnev M (2012) Non-virally modified human mesenchymal stem cells produce ciliary neurotrophic factor in biodegradable fibrin-based 3D scaffolds. J Pharm Sci 101:1546–1554

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by a collaborative grant from the MS Scientific Foundation Canada

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert J. Schenk.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Antos Shakhbazau and Geert J. Schenk have contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 1926 kb)

Glossary

SC

Schwann cells

PNS

Peripheral nervous system

CNS

Central nervous system

EAE

Experimental autoimmune encephalomyelitis

EM

Electron microscopy

MS

Multiple sclerosis

eGFP

Enhanced green fluorescent protein

PBS

Phosphate-buffered saline

GA

Glutaraldehyde

PFA

Paraformaldehyde

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakhbazau, A., Schenk, G.J., Hay, C. et al. Demyelination induces transport of ribosome-containing vesicles from glia to axons: evidence from animal models and MS patient brains. Mol Biol Rep 43, 495–507 (2016). https://doi.org/10.1007/s11033-016-3990-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3990-2

Keywords

Navigation