Skip to main content

Advertisement

Log in

Skeletal muscle transcriptional profiles in two Italian beef breeds, Chianina and Maremmana, reveal breed specific variation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chianina and Maremmana breeds play an important role in the Italian cattle meat market. The Chianina breed is an ancient breed principally raised for draught. Now this breed is the worldwide recognized producer of top quality beef, tasteful and tender, specifically the famous “Florentine steak”. The Maremmana characterized by a massive skeletal structure, is a rustic cattle breed selected for adaptability to the marshy land of the Maremma region. We used a high throughput mRNA sequencing to analyze gene expression in muscle tissues of two Italian cattle breeds, Maremmana (MM) and Chianina (CN) with different selection history. We aim to examine the specific genetic contribution of each breed to meat production and quality, comparing the skeletal muscle tissue from Maremmana and Chianina. Most of the differentially expressed genes were grouped in the Glycolysis/Gluconeogenesis pathways. The rate and the extent of post-mortem energy metabolism have a critical effect on the conversion of muscle to meat. Furthermore, we aim at discovering the differences in nucleotide variation between the two breeds which might be attributable to the different history of selection/divergence. In this work we could emphasize the involvement of pathways of post-mortem energy metabolism. Moreover, we detected a collection of coding SNPs which could offer new genomic resources to improve phenotypic selection in livestock breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MM:

Maremmana

CN:

Chianina

SNP:

Single nucleotide polymorphism

FPKM:

Fragments per kilobase of exon per million fragments mapped

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

DEG:

Differentially expressed gene

ES:

Exon skipping

A5SS:

Alternative 5′ splice site

A3SS:

Alternative 3′ splice site

RI:

Retained intron

OT:

Others

TSS:

Single transcription start site

UTR:

Untraslated region

SIFT:

Sorting intolerant from tolerant

References

  1. Cozzi G, Ragno E (2003) Meat production and market in Italy. Agric Conspec Sci 68:7

    Google Scholar 

  2. Pellecchia M, Negrini R, Colli L, Patrini M, Milanesi E, Achilli A, Bertorelle G, Cavalli-Sforza LL, Piazza A, Torroni A et al (2007) The mystery of Etruscan origins: novel clues from Bos taurus mitochondrial DNA. Proc Biol Sci 274:1175–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Negrini R, Milanesi E, Bozzi R, Pellecchia M, Ajmone-Marsan P (2006) Tuscany autochthonous cattle breeds: an original genetic resource investigated by AFLP markers. J Anim Breed Genet 123:10–16

    Article  CAS  PubMed  Google Scholar 

  4. Felius M (1995) Cattle breeds—an encyclopedia, 1st edn. Misset, Doetinchem

    Google Scholar 

  5. Bongiorni S, Gruber CEM, Bueno S, Chillemi G, Ferrè F, Failla S, Moioli B, Valentini A (2016) Transcriptomic investigation of meat tenderness in two Italian cattle breeds. Anim Genet. doi:10.1111/age.12418

    PubMed  Google Scholar 

  6. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Roberts A, Pimentel H, Trapnell C, Pachter L (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics 27:2325–2329

    Article  CAS  PubMed  Google Scholar 

  9. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:11

    Google Scholar 

  10. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80–92

    Article  CAS  Google Scholar 

  12. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    Article  PubMed  Google Scholar 

  13. Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  14. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosado M, Barber CF, Berciu C, Feldman S, Birren SJ, Nicastro D, Goode BL (2014) Critical roles for multiple formins during cardiac myofibril development and repair. Mol Biol Cell 25:811–827

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wei Z, Sun M, Liu X, Zhang J, Jin Y (2014) Rufy3, a protein specifically expressed in neurons, interacts with actin-bundling protein Fascin to control the growth of axons. J Neurochem 130:678–692

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Baumgart E, Dong GX, Morrell JC, Jimenez-Sanchez G, Valle D, Smith KD, Gould SJ (2002) PEX11alpha is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor alpha-mediated peroxisome proliferation. Mol Cell Biol 22:8226–8240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wheeler TL, Cundiff LV, Shackelford SD, Koohmaraie M (2004) Characterization of biological types of cattle (Cycle VI): carcass, yield, and longissimus palatability traits. J Anim Sci 82:1177–1189

    CAS  PubMed  Google Scholar 

  19. Dunner S, Sevane N, Garcia D, Levéziel H, Williams JL, Mangin B, Valentini A, GeMQual Consortium (2013) Genes involved in muscle lipid composition in 15 European Bos taurus breeds. Anim Genet 44:493–501

    Article  CAS  PubMed  Google Scholar 

  20. Pariset L, Mariotti M, Nardone A, Soysal MI, Ozkan E, Williams JL, Dunner S, Leveziel H, Maróti-Agóts A, Bodò I et al (2010) Relationships between Podolic cattle breeds assessed by single nucleotide polymorphisms (SNPs) genotyping. J Anim Breed Genet 127:481–488

    Article  CAS  PubMed  Google Scholar 

  21. Blott SC, Williams JL, Haley CS (1999) Discriminating among cattle breeds using genetic markers. Heredity (Edinb) 82(Pt 6):613–619

    Article  Google Scholar 

  22. Hwang IH, Park BY, Kim JH, Cho SH, Lee JM (2005) Assessment of postmortem proteolysis by gel-based proteome analysis and its relationship to meat quality traits in pig longissimus. Meat Sci 69:79–91

    Article  CAS  PubMed  Google Scholar 

  23. Gutiérrez-Gil B, Wiener P, Nute GR, Burton D, Gill JL, Wood JD, Williams JL (2008) Detection of quantitative trait loci for meat quality traits in cattle. Anim Genet 39:51–61

    Article  PubMed  Google Scholar 

  24. Timperio AM, D’Alessandro A, Pariset L, D’Amici GM, Valentini A, Zolla L (2009) Comparative proteomics and transcriptomics analyses of livers from two different Bos taurus breeds: “Chianina and Holstein Friesian”. J Proteomics 73:309–322

    Article  CAS  PubMed  Google Scholar 

  25. Koohmaraie M, Geesink GH (2006) Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci 74:34–43

    Article  CAS  PubMed  Google Scholar 

  26. Ferguson DM, Daly BL, Gardner GE, Tume RK (2008) Effect of glycogen concentration and form on the response to electrical stimulation and rate of post-mortem glycolysis in ovine muscle. Meat Sci 78:202–210

    Article  CAS  PubMed  Google Scholar 

  27. Du M, Shen QW, Zhu MJ (2005) Role of beta-adrenoceptor signaling and AMP-activated protein kinase in glycolysis of postmortem skeletal muscle. J Agric Food Chem 53:3235–3239

    Article  CAS  PubMed  Google Scholar 

  28. Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D (2000) Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 346(Pt 3):659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Costford SR, Kavaslar N, Ahituv N, Chaudhry SN, Schackwitz WS, Dent R, Pennacchio LA, McPherson R, Harper ME (2007) Gain-of-function R225 W mutation in human AMPKgamma(3) causing increased glycogen and decreased triglyceride in skeletal muscle. PLoS One 2:e903

    Article  PubMed  PubMed Central  Google Scholar 

  30. Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, Iannuccelli N, Rask L et al (2000) A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle. Science 288:1248–1251

    Article  CAS  PubMed  Google Scholar 

  31. Berg M, Tymoczko JL, Stryer L (2002) Glycolysis and Gluconeogenesis (Ch. 16). In Biochemistry, 5th edn. W.H. Freeman, New York

Download references

Acknowledgments

This manuscript is dedicated to the memory of our friend and colleague Lorraine Pariset. Her work and passion on livestock genetics and her inquiring mind will be always an inspiration to us. This work is part of the GENZOOT research program, funded by Italian Ministry of Agricultural, Forestry and Food Policies (MIPAAF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bongiorni.

Ethics declarations

Ethics statement

This study was carried out in strict accordance with the European Union recommendation directive 2010/63/EU and the Italian low 116/92 about animal care.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bongiorni, S., Gruber, C.E.M., Chillemi, G. et al. Skeletal muscle transcriptional profiles in two Italian beef breeds, Chianina and Maremmana, reveal breed specific variation. Mol Biol Rep 43, 253–268 (2016). https://doi.org/10.1007/s11033-016-3957-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3957-3

Keywords

Navigation