Skip to main content
Log in

Long non-coding RNAs: new players in ocular neovascularization

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Pathological neovascularization are the most prevalent causes of moderate or severe vision loss. Long non-coding RNAs (lncRNAs) have emerged as a novel class of regulatory molecules involved in numerous biological processes and complicated diseases. However, the role of lncRNAs in ocular neovascularization is still unclear. Here, we constructed a murine model of ocular neovascularization, and determined lncRNA expression profiles using microarray analysis. We identified 326 or 51 lncRNAs that were significantly either up-regulated or down-regulated in the vaso-obliteration or neovascularization phase, respectively. Based on Pearson correlation analysis, lncRNAs/mRNAs co-expression networks were constructed. GO enrichment analysis of lncRNAs-co-expressed mRNAs indicated that the biological modules were correlated with chromosome organization, extracellular region and guanylate cyclase activator activity in the vaso-obliteration phase, and correlated with cell proliferation, extracellular region and guanylate cyclase regulator activity in the neovascularization phase. KEGG pathway analysis indicated that MAPK signaling was the most significantly enriched pathway in both phases. Importantly, Vax2os1 and Vax2os2 were not only dynamically expressed in the vaso-obliteration and neovascularization phases, but also significantly altered in the aqueous humor of patients with neovascular age-related macular degeneration (AMD), suggesting a potential role of lncRNAs in the regulation of ocular neovascularization. Taken together, this study provided novel insights into the molecular pathogenesis of ocular neovascularization. The intervention of dysregulated lncRNA could become a potential target for the prevention and treatment of ocular vascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nature 473:298–307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Qazi Y, Maddula S, Ambati BK (2009) Mediators of ocular angiogenesis. J Genet 88:495–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Campochiaro PA (2013) Ocular neovascularization. J Mol Med 91:311–321

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Rajappa M, Saxena P, Kaur J (2010) Ocular angiogenesis: mechanisms and recent advances in therapy. Adv Clin Chem 50:103–121

    Article  CAS  PubMed  Google Scholar 

  5. de Nadal E, Ammerer G, Posas F (2011) Controlling gene expression in response to stress. Nat Rev Genet 12:833–845

    PubMed  Google Scholar 

  6. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361

    Article  CAS  PubMed  Google Scholar 

  7. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hung T, Chang HY (2010) Long noncoding RNA in genome regulation: prospects and mechanisms. RNA Biol 7:582–585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Hoheisel JD (2006) Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet 7:200–210

    Article  CAS  PubMed  Google Scholar 

  10. Smith LE, Wesolowski E, McLellan A, Kostyk SK, D’Amato R, Sullivan R, D’Amore PA (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35:101–111

    CAS  PubMed  Google Scholar 

  11. Liao Q, Liu C, Yuan X, Kang S, Miao R, Xiao H, Zhao G, Luo H, Bu D, Zhao H, Skogerbø G, Wu Z, Zhao Y (2011) Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res 39:3864–3878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. da Huang W, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, Guo Y, Stephens R, Baseler MW, Lane HC, Lempicki RA (2007) DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 35:W169–W175

    Article  PubMed Central  PubMed  Google Scholar 

  13. Wingender E, Dietze P, Karas H, Knüppel R (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24:238–241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Agostini F, Zanzoni A, Klus P, Marchese D, Cirillo D, Tartaglia GG (2013) catRAPID omics: a web server for large-scale prediction of protein-RNA interactions. Bioinformatics 29:2928–2930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Meola N, Pizzo M, Alfano G, Surace EM, Banfi S (2012) The long noncoding RNA Vax2os1 controls the cell cycle progression of photoreceptor progenitors in the mouse retina. RNA 18:111–123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Berezikov E, Robine N, Samsonova A, Westholm JO, Naqvi A, Hung JH, Okamura K, Dai Q, Bortolamiol-Becet D, Martin R, Zhao Y, Zamore PD, Hannon GJ, Marra MA, Weng Z, Perrimon N, Lai EC (2011) Deep annotation of Drosophila melanogaster microRNAs yields insights into their processing, modification, and emergence. Genome Res 21:203–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Rapicavoli NA, Poth EM, Blackshaw S (2010) The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev Biol 10:49

    Article  PubMed Central  PubMed  Google Scholar 

  18. Rapicavoli NA, Poth EM, Zhu H, Blackshaw S (2011) The long noncoding RNA Six3OS acts in trans to regulate retinal development by modulating Six3 activity. Neural Dev 6:1–15

    Article  Google Scholar 

  19. Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ, Krah NM, Seaward MR, Willett KL, Aderman CM, Guerin KI, Hua J, Löfqvist C, Hellström A, Smith LE (2010) The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci 51:2813–2826

    Article  PubMed Central  PubMed  Google Scholar 

  20. Grossniklaus HE, Kang SJ, Berglin L (2010) Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res 29:500–519

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ulitsky I, Bartel DP (2013) lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Bergmann JH, Spector DL (2014) Long non-coding RNAs: modulators of nuclear structure and function. Curr Opin Cell Biol 26:10–18

    Article  CAS  PubMed  Google Scholar 

  23. Potter LR (2011) Guanylyl cyclase structure, function and regulation. Cell Signal 23:1921–1926

    Article  CAS  PubMed  Google Scholar 

  24. Garthwaite J (2010) New insight into the functioning of nitric oxide-receptive guanylyl cyclase: physiological and pharmacological implications. Mol Cell Biochem 334:221–232

    Article  CAS  PubMed  Google Scholar 

  25. Armstrong D, Ueda T, Ueda T, Aljada A, Browne R, Fukuda S, Spengler R, Chou R, Hartnett M, Buch P, Dandona P, Sasisekharan R, Dorey CK (1998) Lipid hydroperoxide stimulates retinal neovascularization in rabbit retina through expression of tumor necrosis factor-α, vascular endothelial growth factor and platelet-derived growth factor. Angiogenesis 2:93–104

    Article  CAS  PubMed  Google Scholar 

  26. Zou H, Otani A, Oishi A, Yodoi Y, Kameda T, Kojima H, Yoshimura N (2010) Bone marrow-derived cells are differentially involved in pathological and physiological retinal angiogenesis in mice. Biochem Biophys Res Commun 391:1268–1273

    Article  CAS  PubMed  Google Scholar 

  27. Kim EK, Choi E-J (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405

    Article  CAS  PubMed  Google Scholar 

  28. Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 1813:1619–1633

    Article  CAS  PubMed  Google Scholar 

  29. Boyd PJ, Doyle J, Gee E, Pallan S, Haas TL (2005) MAPK signaling regulates endothelial cell assembly into networks and expression of MT1-MMP and MMP-2. Am J Physiol Cell Physiol 288:C659–C668

    Article  CAS  PubMed  Google Scholar 

  30. Stenzel D, Lundkvist A, Sauvaget D, Busse M, Graupera M, van der Flier A, Wijelath ES, Murray J, Sobel M, Costell M, Takahashi S, Fässler R, Yamaguchi Y, Gutmann DH, Hynes RO, Gerhardt H (2011) Integrin-dependent and-independent functions of astrocytic fibronectin in retinal angiogenesis. Development 138:4451–4463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Vallabhapurapu S, Karin M (2009) Regulation and function of NF-κB transcription factors in the immune system. Annu Rev Immunol 27:693–733

    Article  CAS  PubMed  Google Scholar 

  32. Sethi G, Sung B, Aggarwal BB (2008) Nuclear factor-κB activation: from bench to bedside. Exp Biol Med (Maywood) 233:21–31

    Article  CAS  Google Scholar 

  33. Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-κB signaling pathways. Nat Immunol 12:695–708

    Article  CAS  PubMed  Google Scholar 

  34. You J–J, Yang C-H, Yang C-M, Chen M-S (2013) Cyr61 induces the expression of monocyte chemoattractant protein-1 via the integrin ανβ3, FAK, PI3 K/Akt, and NF-κB pathways in retinal vascular endothelial cells. Cell Signal 26(1):133–140

    Article  PubMed  Google Scholar 

  35. Kaarniranta K, Salminen A (2009) NF-κB signaling as a putative target for ω-3 metabolites in the prevention of age-related macular degeneration (AMD). Exp Gerontol 44:685–688

    Article  CAS  PubMed  Google Scholar 

  36. Sjakste N, Bielskiene K, Bagdoniene L, Labeikyte D, Gutcaits A, Vassetzky Y, Sjakste T (2012) Tightly bound to DNA proteins: possible universal substrates for intranuclear processes. Gene 492:54–64

    Article  CAS  PubMed  Google Scholar 

  37. Tian Y, Simanshu DK, Ascano M, Diaz-Avalos R, Park AY, Juranek SA, Rice WJ, Yin Q, Robinson CV, Tuschl T, Patel DJ (2011) Multimeric assembly and biochemical characterization of the Trax-translin endonuclease complex. Nat Struct Mol Biol 18:658–664

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Scheller N, Resa-Infante P, de la Luna S, Galao RP, Albrecht M, Kaestner L, Lipp P, Lengauer T, Meyerhans A, Díez J (2007) Identification of PatL1, a human homolog to yeast P body component Pat1. Biochim Biophys Acta 1773:1786–1792

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was generously supported by grants from the National Natural Science Foundation of China (Grant No. 81300241 to B.Y. and Grant No. 81371055 to Q.J.), grants from the National clinical key construction project [Grant No. (2012) 649 to Q.J.], and grants from the Medical Science and Technology Development Project Fund of Nanjing (Grant No. ZKX 12047 to Q.J., Grant No. YKK12207 to G.F.-C., and Grant No. YKK12208 to J.Y.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Qin or Biao Yan.

Additional information

Xue-Dong Xu, Ke-Ran Li and Xiu-Miao Li have contributed equally to this paper.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, XD., Li, KR., Li, XM. et al. Long non-coding RNAs: new players in ocular neovascularization. Mol Biol Rep 41, 4493–4505 (2014). https://doi.org/10.1007/s11033-014-3320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3320-5

Keywords

Navigation