Skip to main content

Advertisement

Log in

Structure and dynamics studies of sterol 24-C-methyltransferase with mechanism based inactivators for the disruption of ergosterol biosynthesis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The enzyme sterol 24-C-methyltransferase (SMT) belongs to the family of transferases, specifically to the one-carbon transferring methyltransferases. SMT has been found playing a major role during the production of steroids, especially for the biosynthesis of ergosterol, which is the major membrane sterol in leishmania parasites, causing leishmaniasis. However, SMT and ergosterol are not found in mammals, so, an extensive study has been carried out over the susceptible SMT protein, which is found to be highly conserved among all the Leishmania species and holds a significant anti-leishmanial drug target. To date, there is no computational data available for SMT, due to its highly unexplored profile. In this work, a complete set of structural attributes have been examined through the available computational procedures, along with an attempt to characterize the most capable modeling server available. The exploration ranges from physicochemical characterization, pairwise alignment, secondary structure prediction, to active site detection. With this information, a docking study was carried out to find the compound that best binds into the active site. Moreover, molecular dynamics simulation was conducted to examine the stability of the homology modeled protein and the ligand–enzyme complex. The results indicate that the ligand–enzyme complex is more stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yokota T (1997) The structure, biosynthesis and function of brassinosteroids. Trends Plant Sci 2:137–143. doi:10.1016/S1360-1385(97)01017-0

    Article  Google Scholar 

  2. Thompson MJ, Svoboda JA, Kaplanis JN, Robbins WE (1972) Metabolic pathways of steroids in insects. Proc R Soc Lond 180:203–221. doi:10.1098/rspb 1972.0015

    Article  CAS  PubMed  Google Scholar 

  3. Hendrix JW (1970) Sterols in growth and reproduction of fungi. Annu Rev Phytopathol 8:111–130. doi:10.1146/annurev.py.08.090170.000551

    Article  CAS  Google Scholar 

  4. Nes WD, Zhou W, Ganapathy K, Liu J, Vatsyayan R, Chamala S, Hernandez K, Miranda M (2009) Sterol 24-C-methyltransferase: an enzymatic target for the disruption of ergosterol biosynthesis and homeostasis in Cryptococcus neoformans. Arch Biochim Biophys 481:210–218. doi:10.1016/j.abb.2008.11.003

    Article  CAS  Google Scholar 

  5. Davies CR, Kaye P, Croft SL, Sundar S (2003) Leishmaniasis: new approaches to disease control. BMJ 82:326–377

    Google Scholar 

  6. Prüss-Üstün A, Corvalán C (2006) Preventing disease through healthy environments. World Health Organization, Geneva

    Google Scholar 

  7. Goto Y, Bhatia A, Raman AS, Vidal SEZ, Bertholet S, Coler RN, Howard RF, Reed SG (2009) Leishmania infantum sterol 24-C-methyltransferase formulated with MPL-SE induces cross-protection against L. major infection. Vaccine 27:2884–2890. doi:10.1016/j.vaccine.2009.02.079

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Wilson ME, Young BM, Andersen KP, Weinstock JV, Metwali A, Ali KM (1995) A recombinant Leishmania chagasi antigen that stimulates cellular immune responses in infected mice. Infect Immun 63:2062–2069

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet 366:1561–1577. doi:10.1016/S0140-6736(05)67629-5

    Article  CAS  PubMed  Google Scholar 

  10. Goto Y, Bogatzki LY, Bertholet S, Coler SN, Reed SG (2007) Protective immunization against visceral leishmaniasis using Leishmania sterol 24-C-methyltransferase formulated in adjuvant. Vaccine 25:7450–7458. doi:10.1016/j.vaccine.2007.08.001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Siqueira-Neto JL, Song O, Oh H, Sohn J, Yang G, Nam J, Jang J, Cechetto J, Lee CB, Moon S, Genovesio A, Chatelain E, Christophe T, Freitas-Junior LH (2010) Antileishmanial high-throughput drug screening reveals drug candidates with New Scaffolds. PLoS Negl Trop Dis 4(5):e675. doi:10.1371/journal.pntd.0000675

    Article  PubMed Central  PubMed  Google Scholar 

  12. Monzote L (2009) Current treatment of leishmaniasis: a review. Open Antimicrob Agents J 1:9–19

    CAS  Google Scholar 

  13. Ator MA, Schmidt SJ, Adams JL, Dolle RE (1989) Mechanism and inhibition of ∆-sterol methyltransferase from Candida albicans and Candida tropicalis. Biochemistry 28:9633–9640. doi:10.1021/bi00451a014

    Article  CAS  PubMed  Google Scholar 

  14. Nes WD, Xu S, Parish EJ (1989) Metabolism of 24(R, S)-epiminolanosterol to 25-aminolanosterol and lanosterol by Gibberella fujikuroi. Arch Biochem Biophys 272:323–331. doi:10.1016/0003-9861(89)90226-9

    Article  CAS  PubMed  Google Scholar 

  15. Nes WD (2000) Sterol methyltransferase: enzymology and inhibition. Biochim Biophys Acta 1529:63–68. doi:10.1016/S1388-1981(00)00138-4

    Article  CAS  PubMed  Google Scholar 

  16. Guo D, Nichols D, Zhou W, Lopez M, Mangla AT, Nes WD (1997) Antifungal sterol biosynthesis inhibitors. Subcell Biochem 28:89–116

    Article  CAS  PubMed  Google Scholar 

  17. Zhou W, Nes W (2003) Sterol methyltransferase2: purification, properties and inhibition. Arch Biochem Biophys 420:18–34. doi:10.1016/j.abb.2003.08.029

    Article  CAS  PubMed  Google Scholar 

  18. Nes WD, McCourt BS, Marshall JA, Ma J, Dennis AL, Lopez M, Li H, He L (1999) Site-directed mutagenesis of the sterol methyl transferase active site from Saccharomyces cerevisiae results in formation of novel 24-ethyl sterols. J Org Chem 64:1535–1542. doi:10.1021/jo9819943

    Article  CAS  PubMed  Google Scholar 

  19. Mangla AT, Nes WD (2002) Sterol C-methyltransferase from Prototheca wickerhamii. Mechanism, sterol specificity and inhibition. Bioorg Med Chem 8:925–936

    Article  Google Scholar 

  20. Ator MA, Schmidt SJ, Adams JL, Dolle RE, Kruse LI, Frey CL, Barone JM (1989) Synthesis, specificity, and antifungal activity of inhibitors of the Candida albicans ∆24-sterol methyl transferase. J Med Chem 35:100–106

    Article  Google Scholar 

  21. Nes WD, Guo D, Zhou W (1997) Substrate-based inhibitors of the (S)-adenosyl-l-methionine: ∆24 (25)—to ∆24 (28)—sterol methyltransferase from Saccharomyces cerevisiae. Arch Biochem Biophys 342:68–81. doi:10.1006/abbi 1997.9984

    Article  CAS  PubMed  Google Scholar 

  22. Rahman MD, Pascal RA (1990) Inhibitors of ergosterol biosynthesis and growth of the trypansomatid protozoan Crithidia fasciculata. J Biol Chem 265:4989–4996

    CAS  PubMed  Google Scholar 

  23. Zhou W, Song Z, Kanagasabai R, Liu J, Jayasimha P, Sinha A, Veeramachanemi P, Miller MB, Nes WD (2004) Mechanism-based enzyme inactivators of phytosterol biosynthesis. Molecules 9:185–203. doi:10.3390/90400185

    Article  CAS  PubMed  Google Scholar 

  24. Nes WD, He L, Mangla AT (1998) 4, 4, 14α-Trimethyl-9β, 19-cyclo-5α-26-homocholesta-24, 26-dien-3 β-ol: a potent mechanism-based inactivator of ∆24(25)—to ∆25(27)—sterol methyl transferase. Bioorg Med Chem Lett 8:3449–3452

    Article  CAS  PubMed  Google Scholar 

  25. Zhou W, Song Z, Liu J, Miller MB, Nes WD (2004) 24-Thiacycloartanol, a potent mechanism-based inactivator of plant sterol methyltransferase. Tetrahedron Lett 45:875–878. doi:10.1016/j.tetlet.2003.10.203

    Article  CAS  Google Scholar 

  26. Eswar N, Eramian D, Webb B, Shen MY, Sali A (2008) Protein structure modeling with MODELLER. Structural proteomics, vol 426. Humana Press, Totowa, pp 145–159

    Chapter  Google Scholar 

  27. Rodriguez R, Chinea G, Lopez N, Pons T, Vriend G (1998) Homology modeling, model and software evaluation: three related resources. Bioinformatics 14:523–528. doi:10.1093/bioinformatics/14.6.523

    Article  CAS  PubMed  Google Scholar 

  28. Gopalakrishnan K, Sowmiya G, Sheik SS, Sekar K (2007) Ramachandran plot on the web (2.0). Protein Pept Lett 14:669–671

    Article  CAS  PubMed  Google Scholar 

  29. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9. doi:10.1093/nar/gkn201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38. doi:10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  31. Pearlman DA, Case DD, Caldwell JW, Ross ZS, Cheatham TE, DeBolt S (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41. doi:10.1016/0010-4655(95)00041-D

    Article  CAS  Google Scholar 

  32. Pettersen EF, Gpddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi:10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  33. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  34. Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzym 277:396–404. doi:10.1016/S0076-6879(97)77022-8

    Article  CAS  Google Scholar 

  35. Wallner B, Elofsson A (2006) Identification of correct regions in protein models using structural, alignment, and consensus information. Protein Sci 15:900–913. doi:10.1110/ps.051799606

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410. doi:10.1093/nar/gkm290

    Article  PubMed Central  PubMed  Google Scholar 

  37. Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function from 3D structure. Nucleic Acids Res 33:W89–W93. doi:10.1093/nar/gki414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. The proteomics protocols handbook. Humana Press, Totowa, pp 571–607. doi:10.1385/1-59259-890-0:571

    Google Scholar 

  39. Sivakumar K, Balaji S, Krishnan GR (2007) In silico characterization of antifreeze proteins using computational tools and servers. J Chem Sci 119:571–579

    Article  CAS  Google Scholar 

  40. Sankararaman S, Sha F, Kirsch JF, Jordan MI, Sjölander K (2010) Active site prediction using evolutionary and structural information. Bioinformatics 26:617–624. doi:10.1093/bioinformatics/btq008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Mangla AT, Nes WD (2000) Sterol C-methyl transferase from Prototheca wickerhamii mechanism, sterol specificity and inhibition. Bioorg Med Chem 8:925–936. doi:10.1016/S0968-0896(00)00040-7

    Article  CAS  PubMed  Google Scholar 

  42. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell GS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. doi:10.1002/jcc.21256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi:10.1002/jcc.21334

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Martí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Šali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325. doi:10.1146/annurev.biophys.29.1.291

    Article  PubMed  Google Scholar 

  45. Costanzi S (2012) Homology modeling of class ag protein-coupled receptors. Homology modeling. Humana Press, New York, pp 259–279

    Google Scholar 

  46. Nes WD, Marshall JA, Jia Z, Jaradat TT, Song Z, Jayasimha P (2002) Active site mapping and substrate channeling in the sterol methyltransferase pathway. J Biol Chem 277:42549–42556. doi:10.1074/jbc.M204223200

    Article  CAS  PubMed  Google Scholar 

  47. Boissy G, O’Donohue M, Gaudemer O, Perez V, Pernollet JC, Brunie S (1999) The 2.1 Å structure of an elicitin–ergosterol complex: a recent addition to the sterol carrier protein family. Pro Sci 8:1191–1199. doi:10.1110/ps.8.6.1191

    Article  CAS  Google Scholar 

  48. Pruthvi J, Nes WD (2008) Photoaffinity labeling and mutational analysis of 24-C-sterol methyltransferase defines the AdoMet binding site. Lipids 43:681–693. doi:10.1007/s11745-008-3198-x

    Article  Google Scholar 

  49. Shahlaei M, Madadkar-Sobhani A, Mahname K, Fassihi A, Saghaie L, Mansourian M (2011) Homology modeling of human CCR5 and analysis of its binding properties through molecular docking and molecular dynamics simulation. Biochim Biophys Acta 1808:802–817. doi:10.1016/j.bbamem.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  50. Saleem A, Azam SS, Zarina S (2012) Docking and molecular dynamics simulation studies on glycation-induced conformational changes of human paraoxonase 1. Eur Biophys J 41:241–248. doi:10.1007/s00249-011-0779-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful for the support provided by Higher Education Commission (HEC) of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Sikander Azam.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azam, S.S., Abro, A., Raza, S. et al. Structure and dynamics studies of sterol 24-C-methyltransferase with mechanism based inactivators for the disruption of ergosterol biosynthesis. Mol Biol Rep 41, 4279–4293 (2014). https://doi.org/10.1007/s11033-014-3299-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3299-y

Keywords

Navigation