Skip to main content
Log in

Ellagic acid inhibits PKC signaling by improving antioxidant defense system in murine T cell lymphoma

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Antioxidants protect the cells from the damaging effects of reactive oxygen species (ROS). Production of ROS during cellular metabolism is balanced by their removal by antioxidants. Any condition leading to increased levels of ROS results in oxidative stress, which participates in multistage carcinogenesis by causing oxidative DNA damage, mutations in the proto-oncogenes and tumor suppressor genes. Antioxidant defense system is required to overcome the process of carcinogenesis generated by ROS. Antioxidant enzymes are major contributors to endogenous antioxidant defense system. Protein kinase C (PKC) is generally involved in cell proliferation and its over expression leads to abnormal tumor growth. Out of three classes of PKC, classical PKC is mainly involved in cell proliferation and tumor growth. Classical PKC initiates signaling pathway and leads to activation of a number of downstream protein via activation of NF-κB. Therefore any agent which can promotes the endogenous antioxidant defense system should be able to down regulate PKC and NF-κB activation and thus may be useful in reducing cancer progression. To investigate this hypothesis we have tested the effect of antioxidant ellagic acid on antioxidant enzymes and PKC signaling in Dalton’s lymphoma bearing (DL) mice. DL mice were treated with three different doses of ellagic acid. The treatment significantly increases the activity and expression of antioxidant enzymes and down regulates the expression of classical isozymes of PKC as well as the activation of NF-κB, indicating that ellagic acid improves antioxidant defense system and PKC signaling via NF-κB which may contribute to its cancer preventive role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol. doi:10.1155/2012/936486

    PubMed Central  PubMed  Google Scholar 

  2. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E (2004) Oxidative stress and cell signalling. Curr Med Chem 11:1163–1182

    Article  CAS  PubMed  Google Scholar 

  3. Yu BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74:139–162

    CAS  PubMed  Google Scholar 

  4. Wu WS (2006) The signaling mechanism of ROS in tumor progression cancer. Metastasis Rev 25:695–705

    Article  CAS  Google Scholar 

  5. Koivunen J, Aaltonen V, Peltonen J (2006) Protein kinase C (PKC) family in cancer progression. Cancer Lett 235:1–10

    Article  CAS  PubMed  Google Scholar 

  6. Saijo K, Mecklenbräuker I, Santana A, Leitger M (2002) Protein kinase Cβ controls nuclear factor κB activation in B cells through selective regulation of the IκB kinase α. J Exp Med 195:1647–1652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Vertegaal AC, Kuiperij HB, Yamaoka S, Courtois G (2000) Protein kinase C-alpha is an upstream activator of the I kappa B kinase complex in the TPA signal transduction pathway to NF-kappa B in U2OS cells. Cell Signal 12:759–768

    Article  CAS  PubMed  Google Scholar 

  8. Jost PJ, Ruland J (2007) Aberrant NF-kB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 109:2700–2707

    CAS  PubMed  Google Scholar 

  9. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72(11):1493–1505

    Article  CAS  PubMed  Google Scholar 

  10. Kim SO, Chun KS, Kundu JK, Surh YJ (2004) Inhibitory effects of [6]-gingerol on PMA-induced COX-2 expression and activation of NF-kB and p38 MAPK in mouse skin. BioFactors 21:27–31

    Article  PubMed  Google Scholar 

  11. Takada Y, Murakami A, Aggarwal BB (2005) Zerumbone abolishes NF-kappa B and Ik Bα kinase activation leading to suppression of antiapoptotic and metastatic gene expression, up regulation of apoptosis, and down regulation of invasion. Oncogene 24(46):6957–6969

    Article  CAS  PubMed  Google Scholar 

  12. Fjaeraa C, Nanberg E (2009) Effect of ellagic acid on proliferation, cell adhesion and apoptosis in SH-SY5Y human neuroblastoma cells. Biomed Pharmacother 63:254–261

    Article  CAS  PubMed  Google Scholar 

  13. Mishra S, Vinayak M (2011) Anti-carcinogenic action of ellagic acid mediated via modulation of oxidative stress regulated genes in Dalton lymphoma bearing mice. Leukemia Lymphoma 52(11):2155–2161

    Article  CAS  PubMed  Google Scholar 

  14. Woodbury W, Spencer AK, Stahman MA (1971) An improved procedure using ferricyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    Article  CAS  PubMed  Google Scholar 

  15. Pathak C, Jaiswal YK, Vinayak M (2008) Queuine promotes antioxidant defence system by activating cellular antioxidant enzyme activities in cancer. Biosci Rep 28:73–81

    Article  CAS  PubMed  Google Scholar 

  16. Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and assay applicable to acrylamide gel. Anal Biochem 44:276–286

    Article  CAS  PubMed  Google Scholar 

  17. Verma N, Vinayak M (2009) Semecarpus anacardium nut extract promotes the antioxidant defence system and inhibits anaerobic metabolism during development of lymphoma. Biosci Rep 29:151–164

    Article  CAS  PubMed  Google Scholar 

  18. Lin CH, Chen H, Hou W (2002) Activity staining of glutathione peroxidase after electrophoresis on native and sodium dodecyl sulphate polyacrylamide gels. Electrophoresis 23:513–516

    Article  CAS  PubMed  Google Scholar 

  19. Hou WC, Liang HJ, Wang CC, Liu DJ (2004) Detection of glutathione reductase after electrophoresis on native or sodium dodecyl sulphate polyacrylamide gels. Electrophoresis 25:2926–2931

    Article  CAS  PubMed  Google Scholar 

  20. Dignam JD, Lebovitz RM, Roeder RG (1983) Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucl Acids Res 11:1475–1489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Mishra S, Vinayak M (2013) Ellagic acid checks lymphoma promotion via regulation of PKC signaling pathway. Mol Biol Rep 40:1417–1428

    Article  CAS  PubMed  Google Scholar 

  22. Liu SF, Ye X, Malik AB (1999) Inhibition of NF-kB activation by pyrrolidine dithiocarbamate prevents in vivo expression of proinflammatory genes. Circulation 100:1330–1337

    Article  CAS  PubMed  Google Scholar 

  23. Goh J, Enns L, Fatemie S, Hopkins H, Morton J, Brewer CP, Ladiges W (2011) Mitochondrial targeted catalase suppresses invasive breast cancer in mice. BMC Cancer 11:191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Glorieux C, Dejeans N, Sid B, Beck R, Calderon PB, Verrax J (2011) Catalase over-expression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy. Biochem Pharmacol 82:1384–1390

    Article  CAS  PubMed  Google Scholar 

  25. Clair DS, Zhao Y, Chaiswing L, Oberley T (2005) Modulation of skin tumorigenesis by SOD. Biomed Pharmacother 59:209–214

    Article  CAS  Google Scholar 

  26. Monari M, Trinchero A, Calabrese C, Cattani O, Serrazanetti GP, Foschi J (2006) Superoxide dismutase in gastric adenocarcinoma: is it a clinical biomarker in the development of cancer? Biomarkers 11(6):574–584

    Article  CAS  PubMed  Google Scholar 

  27. Ough M, Lewis A, Zhang Y, Hinkhouse MM, Ritchie JM (2004) Inhibition of cell growth by over expression of manganese superoxide dismutase (MnSOD) in human pancreatic carcinoma. Free Rad Res 38:1223–1233

    Article  CAS  Google Scholar 

  28. Venkataraman S, Jiang X, Weydert C, Zhang Y (2005) Manganese superoxide dismutase over expression inhibits the growth of androgen-independent prostate cancer cells. Oncogene 24(1):77–89

    Article  CAS  PubMed  Google Scholar 

  29. Hu Y, Rosen DG, Zhou Y, Feng L, Yang G, Liu J, Huang P (2005) Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: role in cell proliferation and response to oxidative stress. Biol Chem 280(47):39485–39492

    Article  CAS  Google Scholar 

  30. Sharma R, Vinayak M (2013) α-Tocopherol prevents lymphoma by improving antioxidant defense system of mice. Mol Biol Rep 40:839–849

    Article  CAS  PubMed  Google Scholar 

  31. Das L, Vinayak M (2012) Anti-carcinogenic action of curcumin by activation of antioxidant defence system and inhibition of NF-κB signalling in lymphoma-bearing mice. Biosci Rep 32:161–170

    Article  CAS  PubMed  Google Scholar 

  32. Verma N, Vinayak M (2009) Effect of Terminalia arjuna on antioxidant defense system in cancer. Mol Biol Rep 36:159–164

    Article  CAS  PubMed  Google Scholar 

  33. Verma N, Vinayak M (2008) Antioxidant action of Andrographis paniculata on lymphoma. Mol Biol Rep 35:535–540

    Article  CAS  PubMed  Google Scholar 

  34. Brigelius-Floh′e R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radical Biol Med 27:951–965

    Article  Google Scholar 

  35. Liu J, Hinkhouse MM, Sun W, Weydert CJ, Ritchie JM, Oberley LW, Cullen JJ (2004) Redox regulation of pancreatic cancer cell growth: role of glutathione peroxidase in the suppression of the malignant phenotype. Hum Gene Ther 15(3):239–250

    Article  CAS  PubMed  Google Scholar 

  36. Tetlow N, Coggan M, Casarotto MG, Board PG (2004) Functional polymorphism of human glutathione transferase A3: effects on xenobiotic metabolism and steroid biosynthesis. Pharmacogenetics 14(10):657–663

    Article  CAS  PubMed  Google Scholar 

  37. Kuzniak VK, Szaefer H, Dubowska WB (2008) Hepatic and extrahepatic expression of glutathione S-transferase isozymes in mice and its modulation by naturally occurring phenolic acids. Environ Toxicol Pharmacol 25:27–32

    Article  CAS  Google Scholar 

  38. Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S (2012) Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: involvement of p38. Chem Biol Interact 195(2):154–164

    Article  CAS  PubMed  Google Scholar 

  39. Besson A, Yong VW (2000) Involvement of p21Waf1/Cip1 in protein kinase C alpha-induced cell cycle progression. Mol Cell Biol 20:4580–4590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Kamimura K, Hojoand H, Abe M (2004) Characterization of expression of protein kinase C isozymes in human B-cell lymphoma: relationship between its expression and prognosis. Pathol Int 54:224–230

    Article  CAS  PubMed  Google Scholar 

  41. Dorota G et al (2010) Protein kinase C gama in colon cancer cells: expression, Thr514 phosphorylation and sensitivity to butyrate-mediated up regulation as related to the degree of differentiation. Chemi Biol Interact 185:25–32

    Article  CAS  Google Scholar 

  42. Chung CH, Parker JS, Ely KJ, Yajun Yi Y et al (2006) Gene expression profiles identify epithelial-to-mesenchymal carcinoma characteristics of a high-risk head and neck squamous cell transition and activation of nuclear factor- kB signaling as characteristics of a high-risk head and neck squamous cell carcinoma. Cancer Res 66:8210–8218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research was supported by University Grants Commission, India. Sudha Mishra thanks the University Grant Commission, India, for providing a ‘‘Research Fellowship in Science for Meritorious Students’’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjula Vinayak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S., Vinayak, M. Ellagic acid inhibits PKC signaling by improving antioxidant defense system in murine T cell lymphoma. Mol Biol Rep 41, 4187–4197 (2014). https://doi.org/10.1007/s11033-014-3289-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3289-0

Keywords

Navigation