Skip to main content
Log in

Isolation and characterization of OsMY1, a putative partner of OsRac5 from Oryza sativa L.

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

OsRac5 belongs to the rice Rho of plants family, and acts as the molecular switch in the signal pathway which is pivotally involved in the rice fertility control. One of its putative partners, OsMY1, was isolated by yeast two-hybrid screening from rice panicle cDNA library. Bioinformatics analysis shows that OsMY1 contains a coiled-coil domain which generally appeared in the partners of Rho GTPases. By yeast two-hybrid assay, it is confirmed that OsMY1 binds both the wild type (WT) and constitutively active (CA) OsRac5, but does not interact with dominantly negative OsRac5. In addition, the interactions between OsMY1 and WT-OsRac5 or CA-OsRac5 in vivo are demonstrated by bimolecular fluorescence complementation assay. Using PCR-mediated sequence deletion and point mutation of OsMY1, the interaction between OsMY1 and OsRac5 was identified to be mediated by the coiled-coil domain in OsMY1, and their binding was quantified by O-nitro-phenyl-β-d-galactopyranoside assay. Real-time PCR shows that OsMY1 and OsRac5 are coordinately expressed in rice leaves and panicles with similar expression patterns. Our results suggest that OsMY1 is an important target of OsRac5 and that these two genes are involved in the same biological processes in rice growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ROP:

Rho of plants

Y2H:

Yeast two-hybrid

CA:

Constitutively active

DN:

Dominantly negative

BiFC:

Bimolecular Fluorescence Complementation

GEF:

Guanine nucleotide exchange factor

GDI:

Guanine nucleotide dissociation inhibitor

GAP:

GTPase-activating protein

ONPG:

O-Nitro-phenyl-β-d-galactopyranoside

References

  1. Nibau C, Wu HM, Cheung AY (2006) RAC/ROP GTPases: ‘hubs’ for signal integration and diversification in plants. Trends Plant Sci 11(6):309–315

    Article  CAS  PubMed  Google Scholar 

  2. Samaj J, Muller J, Beck M, Bohm N, Menzel D (2006) Vesicular trafficking, cytoskeleton and signalling in root hairs and pollen tubes. Trends Plant Sci 11(12):594–600

    Article  CAS  PubMed  Google Scholar 

  3. Papuga J, Hoffmann C, Dieterle M, Moes D, Moreau F, Tholl S, Steinmetz A, Thomas C (2010) Arabidopsis LIM proteins: a family of actin bundlers with distinct expression patterns and modes of regulation. Plant Cell 22(9):3034–3052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Hwang JU, Gu Y, Lee YJ, Yang Z (2005) Oscillatory ROP GTPase activation leads the oscillatory polarized growth of pollen tubes. Mol Biol Cell 16(11):5385–5399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Gu Y, Fu Y, Dowd P, Li SD, Vernoud V, Gilroy S, Yang ZB (2005) A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol 169(1):127–138

    Article  CAS  PubMed  Google Scholar 

  6. Fu Y, Wu G, Yang Z (2001) Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. J Cell Biol 152(5):1019–1032

    Article  CAS  PubMed  Google Scholar 

  7. Staiger CJ, Poulter NS, Henty JL, Franklin-Tong VE, Blanchoin L (2010) Regulation of actin dynamics by actin-binding proteins in pollen. J Exp Bot 61(7):1969–1986

    Article  CAS  PubMed  Google Scholar 

  8. Cheung AY, Wu HM (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572

    Article  CAS  PubMed  Google Scholar 

  9. Prokhnevsky AI, Peremyslov VV, Dolja VV (2008) Overlapping functions of the four class XI myosins in Arabidopsis growth, root hair elongation, and organelle motility. Proc Natl Acad Sci USA 105(50):19744–19749

    Article  CAS  PubMed  Google Scholar 

  10. Ueda H, Yokota E, Kutsuna N, Shimada T, Tamura K, Shimmen T, Hasezawa S, Dolja VV, Hara-Nishimura I (2010) Myosin-dependent endoplasmic reticulummotility and F-actin organization in plant cells. Proc Natl Acad Sci USA 107(15):6894–6899

    Article  CAS  PubMed  Google Scholar 

  11. Jiang SY, Cai M, Ramachandran S (2007) ORYZA SATIVA MYOSIN XI B controls pollen development by photoperiod-sensitive protein localizations. Dev Biol 304(2):579–592

    Article  CAS  PubMed  Google Scholar 

  12. Mi ZY, Wang SS, Wu NH (2002) Isolation of OsRacD gene encoding a small GTP-binding protein from rice. Chin Sci Bull 47(20):1673–1679

    CAS  Google Scholar 

  13. Ye JR, Huang MJ, Wu NH (2003) Fertility analysis of the Arabidopsis transformed with antisense rice OsRacD gene. Prog Natl Sci 13(6):424–428

    CAS  Google Scholar 

  14. Ye JR, Huang MJ, Zhao SH, Wu NH (2004) The correlation analysis of the expression of OsRacD and rice photoperiod fertility transition. Prog Natl Sci 14(2):166–172 (in chinese)

    Google Scholar 

  15. Liang WH, Tang CR, Wu NH (2004) Cloning and characterization of a new actin gene from Oryza sativa L. Prog Natl Sci 14(10):867–874

    Article  CAS  Google Scholar 

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C (T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  17. Liang WH, Wu NH (2006) Effects of G15V point mutation on functions of rice OsRac5 protein. Chin J Biochem Mol Biol 22(4):338–342 (in chinese)

    CAS  Google Scholar 

  18. Liu XF, Liang WH (2010) Effects of T20N site directed mutation on GTPase activities of OsRacD from Oryza sativa. Chin Biotechnol 30(1):56–61 (in chinese)

    CAS  Google Scholar 

  19. Liang WH, Zhang LJ, Li L, Zhang F, Shi HH, Shang F, Li H, Li MM (2010) Effects of D121N point mutation on OsRac5 protein. In: 3rd international conference on future biomedical information engineering, vol III, pp 253–256

  20. Hashimoto K, Igarashi H, Mano SJ, Takenaka C, Shiina T, Yamaguchi M, Demura T, Nishimura M, Shimmen T, Yokota E (2008) An isoform of Arabidopsis myosin XI interacts with small GTPases in its C-terminal tail region. J Exp Bot 59(13):3523–3531

    Article  CAS  PubMed  Google Scholar 

  21. Gu Y, Li S, Lord EM, Yang Z (2006) Members of a novel class of Arabidopsis Rho guanine nucleotide exchange factors control RhoGTPase-dependent polar growth. Plant Cell 18(2):366–381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Klahre U, Kost B (2006) Tobacco RhoGTPase ACTIVATING PROTEIN1 spatially restricts signaling of RAC/Rop to the apex of pollen tubes. Plant Cell 18(11):3033–3046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Kieffer F, Elmayan T, Rubier S, Simon-Plas F, Dagher MC, Blein JP (2000) Cloning of Rac and Rho-GDI from tobacco using an heterologous two-hybrid screen. Biochimie 82(12):1099–1105

    Article  CAS  PubMed  Google Scholar 

  24. Lavy M, Bloch D, Hazak O, Gutman I, Poraty L, Sorek N, Sternberg H, Yalovsky S (2007) A novel ROP/RAC effector links cell polarity, root-meristem maintenance, and vesicle trafficking. Curr Biol 17(11):947–952

    Article  CAS  PubMed  Google Scholar 

  25. Bloch D, Hazak O, Lavy M, Yalovsky S (2008) A novel ROP/RAC GTPase effector integrates plant cell form and pattern formation. Plant Signal Behav 3(1):41–43

    Article  PubMed Central  PubMed  Google Scholar 

  26. Li S, Gu Y, Yan A, Lord E, Yang ZB (2008) RIP1 (ROP Interactive Partner 1)/ICR1 marks pollen germination sites and may act in the ROP1 pathway in the control of polarized pollen growth. Mol Plant 1(6):1021–1035

    Article  CAS  PubMed  Google Scholar 

  27. Hazak O, Bloch D, Poraty L, Sternberg H, Zhang J, Friml J, Yalovsky S (2010) A rho scaffold integrates the secretory system with feedback mechanisms in regulation of auxin distribution. PLoS Biol 8(1):e1000282. doi:10.1371/journal.pbio.1000282

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lupas A (1996) Coiled coils: new structures and new functions. Trends Biochem Sci 21(10):375–382

    Article  CAS  PubMed  Google Scholar 

  29. Lapierre LA, Kumar R, Hales CM, Navarre J, Bhartur SG, Burnette JO, Provance DW Jr, Mercer JA, Bähler M, Goldenring JR (2001) Myosin Vb is associated with plasma membrane recycling systems. Mol Biol Cell 12(6):1843–1857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Li H, Lin Y, Heath RM, Zhu MX, Yang ZB (1999) Control of pollen tube tip growth by a Rop GTPase-dependent pathway that leads to tip-localized calcium influx. Plant cell 11(9):1731–1742

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Li H, Shen JJ, Zheng ZL, Lin Y, Yang ZB (2001) The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiol 126(2):670–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 31171182; U1204305), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (No. 104100510012), Program for Innovative Research Team (in Science and Technology) in University of Henan Province (13IRTSTHN009) and Henan Natural Science Research project (No. 2010A180012, No. 132300410137). We thank MedSci for critical English editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Hong Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, WH., Wang, HH., Li, H. et al. Isolation and characterization of OsMY1, a putative partner of OsRac5 from Oryza sativa L.. Mol Biol Rep 41, 1829–1836 (2014). https://doi.org/10.1007/s11033-014-3032-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3032-x

Keywords

Navigation