Skip to main content
Log in

Cloning and characterization of dehydrin gene from Ammopiptanthus mongolicus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Based on the sequence of an expressed sequence tag, the full-length cDNA of 1,008 nucleotides was cloned from Ammopiptanthus mongolicus by rapid amplification of cDNA ends. It was designated as AmDHN, encoding a protein of 183 amino acids. The calculated molecular weight of the AmDHN protein is 18.4 k Da, and theoretical isoelectric point is 5.78. The AmDHN localized in nucleus. Under normal growth conditions, differential expression of AmDHN exhibited that the expression was the highest in seeds and the lowest in flowers. AmDHN could be induced by NaCl, PEG6000, ABA and drought treatments. Salt and drought resistances of transgenic plants with overexpression of AmDHN are improved. Taken together, these results demonstrated that AmDHN could regulate the expression of abiotic-responsive genes and plays important roles in modulating the tolerance of plants to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

CDS:

Coding domain sequence

GFP:

Green fluorescent protein

RACE:

Rapid amplification of cDNA ends

RT-PCR:

Reverse transcriptase polymerase chain reaction

SSH:

Suppression subtraction hybridization

MW:

Molecular weight

References

  1. Araus JL, Slafer GA, Reynolds MP, Royo C (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89(7):925–940. doi:10.1093/aob/mcf049

    Article  PubMed  Google Scholar 

  2. Boyer JS (1982) Plant productivity and environment. Science 218(4571):443–448. doi:10.1126/science.218.4571.443

    Article  PubMed  CAS  Google Scholar 

  3. Chao Y, Kang J, Sun Y, Yang Q et al (2009) Molecular cloning and characterization of a novel gene encoding zinc finger protein from Medicago sativa L. Mol Biol Rep 36(8):2315–2321. doi:10.1007/s11033-009-9450-5

    Article  PubMed  CAS  Google Scholar 

  4. Zhang X, Ju HW, Chung MS, Huang P et al (2011) The R–R-type MYB-like transcription factor, AtMYBL, is involved in promoting leaf senescence and modulates an abiotic stress response in Arabidopsis. Plant Cell Physiol 52(1):138–148. doi:10.1093/pcp/pcq180

    Article  PubMed  CAS  Google Scholar 

  5. Kasuga M, Liu Q, Miura S et al (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287–291. doi:10.1002/9780470515778.ch13

    Article  PubMed  CAS  Google Scholar 

  6. Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plantarum 97(4):795–803. doi:10.1111/j.1399-3054.1996.tb00546.x

    Article  CAS  Google Scholar 

  7. Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plantarum 100(2):291–296. doi:10.1111/j.1399-3054.1997.tb04785.x

    Article  CAS  Google Scholar 

  8. Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103(4):1035–1040

    PubMed  CAS  Google Scholar 

  9. Koag MC, Fenton RD, Wilkens S, Timothy JC et al (2003) The binding of maize DHN1 to lipid vesicles. gain of structure and lipid specificity. Plant Physiol 131(1):309–316. doi:10.1104/pp.011171

    Article  PubMed  CAS  Google Scholar 

  10. Xu S, An L, Feng H, Wang X, Li X et al (2002) The seasonal effects of water stress on Ammopiptanthus mongolicus in a desert environment. J Arid Environ 51(3):437–447. doi:10.1006/jare.2001.0949

    Article  Google Scholar 

  11. Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  PubMed  CAS  Google Scholar 

  12. Parmentier-Line CM, Panta GR, Rowland LJ (2002) Changes in dehydrin expression associated with cold, ABA and PEG treatments in blueberry cell cultures. Plant Sci 162(2):273–282. doi:10.1016/S0168-9452(01)00563-5

    Article  CAS  Google Scholar 

  13. Giordani T, Natali L, D’Ercole A, Pugliesiet C, Fambrini M, Vernieri P et al (1999) Expression of a dehydrin gene during embryo development and drought stress in ABA-deficient mutants of sunflower (Helianthus annuus L.). Plant Mol Bio 39(4):739–748. doi:10.1023/A:1006194720022

    Article  CAS  Google Scholar 

  14. Han B, Kermode AR (1996) Dehydrin-like proteins in castor bean seeds and seedlings are differentially produced in response to ABA and water-deficit-related stresses. J Exp Bot 47(7):933. doi:10.1093/jxb/47.7.933

    Article  CAS  Google Scholar 

  15. Borovskii GB, Stupnikova IV, Antipina AI, Vladimirova SV, Voinikov VK (2002) Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biol 2(1):5. doi:10.1186/1471-2229-2-5

    Article  PubMed  Google Scholar 

  16. Mundy J, Chua NH (1998) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7(8):2279–2286

    Google Scholar 

  17. Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pagès M, Masmoudi K et al (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26(11):2017–2026. doi:10.1007/s00299-007-0412-x

    Article  PubMed  CAS  Google Scholar 

  18. Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F et al (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10(4):623–638. doi:10.1105/tpc.10.4.623

    PubMed  CAS  Google Scholar 

  19. Zhu B, Choi DW, Fenton R, Close TJ (2000) Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet 264(1):145–153. doi:10.1007/s004380000299

    Article  PubMed  CAS  Google Scholar 

  20. Ohno R, Takumi S, Nakamura C (2003) Kinetics of transcript and protein accumulation of a low-molecular-weight wheat LEA D-11 dehydrin in response to low temperature. J Plant Physiol 160(2):193–200. doi:10.1078/0176-1617-00925

    Article  PubMed  CAS  Google Scholar 

  21. Caruso A, Morabito D, Delmotte F, Kahlem G, Carpin S (2002) Dehydrin induction during drought and osmotic stress in populus. Plant Physiol Bioch 40(12):1033–1042. doi:10.1016/S0981-9428(02)01468-7

    Article  CAS  Google Scholar 

  22. Shekhawat UK, Srinivas L, Ganapathi TR (2011) MusaDHN-1, a novel multiple stress-inducible SK(3)-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Planta 234(5):915–932. doi:10.1007/s00425-011-1455-3

    Article  PubMed  CAS  Google Scholar 

  23. Godoy JA, Lunar R, Torres-Schumann S, Moreno J, Rodrigo RM, Pintor-Toro JA (1994) Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol 26(6):1921–1934. doi:10.1007/BF00019503

    Article  PubMed  CAS  Google Scholar 

  24. Saavedra L, Svensson J, Carballo V, Izmendi D, Welin B, Vidal S (2006) A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant J 45(2):237–249. doi:10.1111/j.1365-313X.2005.02603.x

    Article  PubMed  CAS  Google Scholar 

  25. Cellier F, Conejero G, Breitler JC, Casse F (1998) Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Accumulation of dehydrin transcripts correlates with tolerance. Plant Physiol 116(1):319–328. doi:10.1104/pp.116.1.319

    Article  PubMed  CAS  Google Scholar 

  26. Cheng Z, Targolli J, Huang X, Wu R (2002) Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breeding 10(1):71–82. doi:10.1023/A:1020329401191

    Article  CAS  Google Scholar 

  27. Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110(1):249–257. doi:10.1104/pp.110.1.249

    PubMed  CAS  Google Scholar 

  28. Lee SC, Lee MY, Kim SJ, Jun SH, An G, Kim SR (2005) Characterization of an abiotic stress-inducible dehydrin gene, OsDhn1, in rice (Oryza sativa L.). Mol Cells 19(2):212–218

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Yuehui Chao for advices and helps. This work is supported by the Scientific and technological innovation projects in Inner Mongolia (2011-CXJJM01) and Industrial system of national grass (CARS-35).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Nie, L., Sun, G. et al. Cloning and characterization of dehydrin gene from Ammopiptanthus mongolicus . Mol Biol Rep 40, 2281–2291 (2013). https://doi.org/10.1007/s11033-012-2291-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2291-7

Keywords

Navigation