Skip to main content
Log in

Expression patterns and promoter characteristics of the gene encoding Actinidia deliciosa l-galactose-1-phosphate phosphatase involved in the response to light and abiotic stresses

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The gene encoding l-galactose-1-phosphate phosphatase (GPP) plays a central role in ascorbic acid (AsA) biosynthesis in plants. Here, we report AsA contents, GPP expression, and functioning of its promoter in response to light, exogenous stress-signalling hormones, or abiotic stresses in kiwifruit (Actinidia deliciosa). To identify the upstream region of GPP required for promoter activity, we constructed a series of promoter deletion derivatives. Each construct was analyzed by Agrobacterium-mediated transient transformation in tobacco leaves after various treatments. Some correlation was observed between the relative levels of GPP mRNA and AsA contents when kiwi leaves were exposed to varying light conditions, treatment with ABA or SA, wounding, or a hypoxic environment. Analysis of a series of 5′ deletions in tobacco leaves indicated that the proximal area 390 bp from the transcription initiation site was needed for establishing both the constitutive and the induced patterns of expression. This promoter was induced by light or one of our abiotic treatments. These results suggest that GPP is regulated by light or abiotic stress and that it plays an important role in controlling AsA contents in kiwifruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

AsA:

Ascorbic acid

CaMV 35S:

Cauliflower mosaic virus 35S promoter

GPP :

l-Galactose-1-phosphate phosphatase

GUS :

β-Glucuronidase

MUG:

4-Methylumbelliferyl-β-D-glucuronidehydrate

4-MU:

4-Methylumbelliferone

RT-PCR:

Reverse transcriptase-polymerase chain reaction

RT-qPCR:

Real-time quantitative PCR

SA:

Salicylic acid

References

  1. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  2. Conklin P (2001) Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ 24:383–394

    Article  CAS  Google Scholar 

  3. Davey MW, van Montagu M, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000) Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agr 80:825–860

    Article  CAS  Google Scholar 

  4. Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol 35:291–314

    Article  CAS  Google Scholar 

  5. Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    PubMed  CAS  Google Scholar 

  6. Barth C, De Tullio M, Conklin PL (2006) The role of ascorbic acid in the control of flowering time and the onset of senescence. J Exp Bot 57:1657–1665

    Article  PubMed  CAS  Google Scholar 

  7. Dowdle J, Ishikawa T, Gatzek S, Rolinski S, Smirnoff N (2007) Two genes in Arabidopsis thaliana encoding GDP-l-galactose phosphorylase are required for ascorbate biosynthesis and seedling viability. Plant J 52:673–689

    Article  PubMed  CAS  Google Scholar 

  8. Bartoli C, Guiamet J, Kiddle G, Pastori G, Di Cagno R, Theodoulou F, Foyer C (2005) The relationship between l-galactono-1, 4-lactone dehydrogenase (GalLDH) and ascorbate content in leaves under optimal and stress conditions. Plant Cell Environ 28:1073–1081

    Article  CAS  Google Scholar 

  9. Bartoli CG, Gómez F, Martínez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot 55:1663–1669

    Article  PubMed  CAS  Google Scholar 

  10. Bai T, Li C, Ma F, Feng F, Shu H (2010) Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species. Plant Soil 327:95–105

    Article  CAS  Google Scholar 

  11. Bartoli CG, Tambussi EA, Diego F, Foyer CH (2009) Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves. FEBS Lett 583:118–122

    Article  PubMed  CAS  Google Scholar 

  12. Li M, Ma F, Shang P, Zhang M, Hou C, Liang D (2009) Influence of light on ascorbate formation and metabolism in apple fruits. Planta 230:39–51

    Article  PubMed  CAS  Google Scholar 

  13. Li M, Ma F, Liu J, Li J (2010) Shading the whole vines during young fruit development decreases ascorbate accumulation in kiwi. Physiol Plant 140:225–237

    PubMed  CAS  Google Scholar 

  14. Massot C, Stevens R, Génard M, Longuenesse JJ, Gautier H (2012) Light affects ascorbate content and ascorbate-related gene expression in tomato leaves more than in fruits. Planta 235:153–163

    Article  PubMed  CAS  Google Scholar 

  15. Yabuta Y, Maruta T, Nakamura A, Mieda T, Yoshimura K, Ishikawa T, Shigeoka S (2008) Conversion of l-galactono-1, 4-lactone to l-ascorbate is regulated by the photosynthetic electron transport chain in Arabidopsis. Biosci Biotechnol Biochem 72:2598–2607

    Article  PubMed  CAS  Google Scholar 

  16. Gatzek S, Wheeler GL, Smirnoff N (2002) Antisense suppression of l-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated l-galactose synthesis. Plant J 30:541–553

    Article  PubMed  CAS  Google Scholar 

  17. Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468

    Article  PubMed  CAS  Google Scholar 

  18. Tabata K, Takaoka T, Esaka M (2002) Gene expression of ascorbic acid-related enzymes in tobacco. Phytochemistry 61:631–635

    Article  PubMed  CAS  Google Scholar 

  19. Tamaoki M, Mukai F, Asai N, Nakajima N, Kubo A, Aono M, Saji H (2003) Light-controlled expression of a gene encoding l-galactono-γ-lactone dehydrogenase which affects ascorbate pool size in Arabidopsis thaliana. Plant Sci 164:1111–1117

    Article  CAS  Google Scholar 

  20. Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  PubMed  CAS  Google Scholar 

  21. Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S, Isupov M, Littlechild JA, Smirnoff N (2006) Arabidopsis thaliana VTC4 encodes l-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem 281:15662–15670

    Article  PubMed  CAS  Google Scholar 

  22. Torabinejad J, Donahue JL, Gunesekera BN, Allen-Daniels MJ, Gillaspy GE (2009) VTC4 is a bifunctional enzyme that affects myoinositol and ascorbate biosynthesis in plants. Plant Physiol 150:951–961

    Article  PubMed  CAS  Google Scholar 

  23. Laing WA, Bulley S, Wright M, Cooney J, Jensen D, Barraclough D, MacRae E (2004) A highly specific l-galactose-1-phosphate phosphatase on the path to ascorbate biosynthesis. PNAS 101:16976

    Article  PubMed  CAS  Google Scholar 

  24. Li M, Ma F, Liang D, Li J, Wang Y (2010) Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi. PLoS ONE 5:e14281

    Article  PubMed  Google Scholar 

  25. Di Matteo A, Hancock R, Ross H, Frusciante L, Viola R (2003) Characterisation of Chlorella pyrenoidosa l-ascorbic acid accumulating mutants: identification of an enhanced biosynthetic enzyme activity and cloning of the putative gene from Arabidopsis thaliana. Comp Biochem Physiol 134:S155

    Google Scholar 

  26. Ioannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis AK (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    Article  PubMed  CAS  Google Scholar 

  27. Yabuta Y, Mieda T, Rapolu M, Nakamura A, Motoki T, Maruta T, Yoshimura K, Ishikawa T, Shigeoka S (2007) Light regulation of ascorbate biosynthesis is dependent on the photosynthetic electron transport chain but independent of sugars in Arabidopsis. J Exp Bot 58:2661–2671

    Article  PubMed  CAS  Google Scholar 

  28. Priest HD, Filichkin SA, Mockler TC (2009) cis-regulatory elements in plant cell signaling. Curr Opin Plant Biol 12:643–649

    Article  PubMed  CAS  Google Scholar 

  29. Agius F, Amaya I, Botella MA, Valpuesta V (2005) Functional analysis of homologous and heterologous promoters in strawberry fruits using transient expression. J Exp Bot 56:37–46

    PubMed  CAS  Google Scholar 

  30. Baum K, Gröning B, Meier I (1997) Improved ballistic transient transformation conditions for tomato fruit allow identification of organ-specific contributions of I-box and G-box to the RBCS2 promoter activity. Plant J 12:463–469

    Article  PubMed  CAS  Google Scholar 

  31. Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protoc 1:2019–2025

    Article  CAS  Google Scholar 

  32. Spolaore S, Trainotti L, Casadoro G (2001) A simple protocol for transient gene expression in ripe fleshy fruit mediated by Agrobacterium. J Exp Bot 52:845–850

    PubMed  CAS  Google Scholar 

  33. Tokunaga T, Esaka M (2007) Induction of a novel XIP-type xylanase inhibitor by external ascorbic acid treatment and differential expression of XIP-family genes in rice. Plant Cell Physiol 48:700–714

    Article  PubMed  CAS  Google Scholar 

  34. Asif MH, Dhawan P, Nath P (2000) A simple procedure for the isolation of high quality RNA from ripening banana fruit. Plant Mol Biol Rep 18:109–115

    Article  CAS  Google Scholar 

  35. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  36. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed  CAS  Google Scholar 

  37. Xu W, Yu Y, Ding J, Hua Z, Wang Y (2010) Characterization of a novel stilbene synthase promoter involved in pathogen-and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta 231:475–487

    Article  PubMed  CAS  Google Scholar 

  38. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  39. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  40. Nishiuchi T, Suzuki K, Kitajima S, Sato F, Shinshi H (2002) Wounding activates immediate early transcription of genes for ERFs in tobacco plants. Plant Mol Biol 49:473–482

    Article  PubMed  CAS  Google Scholar 

  41. Bartoli CG, Yu J, Gómez F, Fernández L, McIntosh L, Foyer CH (2006) Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves. J Exp Bot 57:1621–1631

    Article  PubMed  CAS  Google Scholar 

  42. Toledo MEA, Ueda Y, Imahori Y, Ayaki M (2003) l-ascorbic acid metabolism in spinach (Spinacia oleracea L.) during postharvest storage in light and dark. Postharvest Biol Tech 28:47–57

    Article  CAS  Google Scholar 

  43. Li M, Ma F, Guo C, Liu J (2010) Ascorbic acid formation and profiling of genes expressed in its synthesis and recycling in apple leaves of different ages. Plant Physiol Biochem 48:216–224

    Article  PubMed  CAS  Google Scholar 

  44. Kuhlemeier C, Cuozzo M, Green PJ, Goyvaerts E, Ward K, Chua NH (1988) Localization and conditional redundancy of regulatory elements in rbcS-3A, a pea gene encoding the small subunit of ribulose-bisphosphate carboxylase. PNAS 85:4662

    Article  PubMed  CAS  Google Scholar 

  45. Logemann E, Parniske M, Hahlbrock K (1995) Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley. PNAS 92:5905

    Article  PubMed  CAS  Google Scholar 

  46. Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K (1993) An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell 5:1529–1539

    PubMed  CAS  Google Scholar 

  47. Feldbrügge M, Sprenger M, Hahlbrock K, Weisshaar B (1997) PcMYB1, a novel plant protein containing a DNA-binding domain with one MYB repeat, interacts in vivo with a light-regulatory promoter unit. Plant J 11:1079–1093

    Article  PubMed  Google Scholar 

  48. Fukunaga K, Fujikawa Y, Esaka M (2010) Light regulation of ascorbic acid biosynthesis in rice via light responsive cis-elements in genes encoding ascorbic acid biosynthetic enzymes. Biosci Biotech Biochem 74:888–891

    Article  CAS  Google Scholar 

  49. Agarwal P, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plantarum 54:201–212

    Article  CAS  Google Scholar 

  50. Chen Z, Gallie DR (2004) The ascorbic acid redox state controls guard cell signaling and stomatal movement. Plant Cell 16:1143–1162

    Article  PubMed  CAS  Google Scholar 

  51. Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G, Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15:939–951

    Article  PubMed  CAS  Google Scholar 

  52. Shah J (2003) The salicylic acid loop in plant defense. Curr Opin Plant Biol 6:365–371

    Article  PubMed  CAS  Google Scholar 

  53. Fotopoulos V, Sanmartin M, Kanellis AK (2006) Effect of ascorbate oxidase over-expression on ascorbate recycling gene expression in response to agents imposing oxidative stress. J Exp Bot 57:3933–3943

    Article  PubMed  CAS  Google Scholar 

  54. Pastuglia M, Roby D, Dumas C, Cock JM (1997) Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell 9:49–60

    PubMed  CAS  Google Scholar 

  55. Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK (2008) Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. J Exp Bot 59:729–737

    Article  PubMed  CAS  Google Scholar 

  56. Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  PubMed  CAS  Google Scholar 

  57. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  58. Manjunath S, Sachs MM (1997) Molecular characterization and promoter analysis of the maize cytosolic glyceraldehyde 3-phosphate dehydrogenase gene family and its expression during anoxia. Plant Mol Biol 33:97–112

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30871700). The authors are grateful to Professor Yuejin Wang for providing us with vector samples and Priscilla Licht for help in revising our English composition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengwang Ma.

Additional information

Juan Li and Mingjun Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Li, M., Liang, D. et al. Expression patterns and promoter characteristics of the gene encoding Actinidia deliciosa l-galactose-1-phosphate phosphatase involved in the response to light and abiotic stresses. Mol Biol Rep 40, 1473–1485 (2013). https://doi.org/10.1007/s11033-012-2190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2190-y

Keywords

Navigation