Skip to main content
Log in

Molecular cloning and functional characterization of swine sodium dependent phosphate cotransporter type II b (NaPi-IIb) gene

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A sodium-dependent phosphate transporter gene, NaPi-IIb, was isolated from swine small intestine using cDNA library screening method. Sequencing analysis revealed that the NaPi-IIb cDNA sequences was 2,016 bp in length and encoded an open-reading frame consisting of 671 amino acids. The cDNA showed 83.1 % sequences identity to the human NaPi-IIb and 78.7 % sequences identity to the chicken NaPi-IIb. Prediction of membrane spanning domains based on the hydrophilic and hydrophobic properties of the amino acids suggested that a putative protein had nine transmembrane domains, with both the NH2 and COOH terminal being intracellular. By northern blot, a ~4.2 kb transcript was found to be abundantly expressed in mall intestine, lung, ovary, mammary glands, liver, kidney, salivary glands, placenta and thymus. Microinjection of swine NaPi-IIb cRNA into Xenopus oocytes demonstrated that the NaPi-IIb showed sodium-dependent Pi cotransport activity, and an approximate 31-fold increase of Pi uptake was seen in cRNA injected oocytes. The swine NaPi-IIb transporter expressed in Xenopus oocytes had a Km for Pi of ~79.35 ± 7.2 μM. Furthermore, the pH dependency characterization of swine NaPi-IIb transporter showed activation at extracellular alkaline-pH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K (2009) Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol 20:104–113

    Article  PubMed  CAS  Google Scholar 

  2. Miyamoto K, Haito-Sugino S, Kuwahara S, Ohi A, Nomura K, Ito M, Kuwahata M, Kido S, Tatsumi S, Kaneko I, Segawa H (2011) Sodium dependent phosphate cotransporters. Lessons from gene knockout and mutation studies. J Pharm Sci 100:3719–3730

    Article  PubMed  CAS  Google Scholar 

  3. Werner A, Moore ML, Mantei N, Biber J, Semenza G, Murer H (1991) Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci USA 88:9608–9612

    Article  PubMed  CAS  Google Scholar 

  4. Chong SS, Kristjansson K, Zoghbi HY, Hughes MR (1993) Molecular cloning of the cDNA encoding a human renal sodium phosphate transport protein and its assignment to chromosome 6p21.3–p23. Genomics 18:355–359

    Article  PubMed  CAS  Google Scholar 

  5. Chong SS, Kozak CA, Liu L, Kristjansson K, Dunn ST, Bourdeau JE, Hughes MR (1995) Cloning, genetic mapping and expression analysis of amouse renal sodium-dependent phosphate cotransporter. Am J Physiol 268:F1038–F1045

    PubMed  CAS  Google Scholar 

  6. Li H, Xie Z (1995) Molecular cloning of two rat Na/Pi cotransporters. Evidence for different tissue expression of transcripts. Cell Mol Biol Res 41:451–460

    PubMed  CAS  Google Scholar 

  7. Miyamoto KI, Tatsumi S, Sondoda T, Yamamoto H, Minami H, Taketani Y, Takeda E (1995) Cloning and functional expression of a Na-dependent phosphate cotransporter from human kidney: cDNA cloning and functional expression. Biochem J 301:81–85

    Google Scholar 

  8. Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409

    PubMed  CAS  Google Scholar 

  9. Theresa B, Rajiv K (2009) Novel mechanisms in the regulation of phosphorus homeostasis. Physiology 24:17–25

    Article  Google Scholar 

  10. Magagnin S, Werner A, Markovich D, Sorribas V, Stange G, Biber J, Murer H (1993) Expression cloning of human and rat renal cortex Na/Pi cotransport. Proc. Natl Acad Sci USA 90:5979–5983

    Article  PubMed  CAS  Google Scholar 

  11. Biber J, Custer M, Magagnin S, Hayes G, Werner A, Lotscher B, Kaissling B, Murer H (1996) Renal Na/Pi-cotransporters. Kidney Int 49:981–985

    Article  PubMed  CAS  Google Scholar 

  12. Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J (1998) Characterization of a murine type II sodiumphosphate cotransporter expressed in mammalian intestine. Proc Natl Acad Sci USA 95:14564–14569

    Article  PubMed  CAS  Google Scholar 

  13. Yamamoto T, Michigami T, Aranami F, Segawa H, Yoh K, Nakajima S, Miyamoto K, Ozono K (2007) Hereditary hypophosphatemic rickets with hypercalciuria: a study for the phosphate transporter gene type IIc and osteoblastic function. J Bone Miner Metab 25:407–413

    Article  PubMed  Google Scholar 

  14. Murer H, Forster I, Biber J (2004) The sodium phosphate cotransporter family SLC34. Pflugers Arch 447:763–767

    Article  PubMed  CAS  Google Scholar 

  15. Sabbagh Yves, O’Brien Stephen P, Song Wenping, Boulanger Joseph H, Stockmann Adam, Arbeeny Cynthia, Schiavi Susan C (2009) Intestinal Npt2b plays a major role in phosphate absorption and homeostasis. J Am Soc Nephrol 20:2348–2358

    Article  PubMed  CAS  Google Scholar 

  16. Yan F, Angel R, Ashwell CM (2007) Characterization of the chicken small intestine type IIb sodium phosphate cotransporter. Poult Sci 86(1):67–76

    PubMed  CAS  Google Scholar 

  17. Kavanaugh MP, Kabat D (1996) Identification and characterization of a widely expressed phosphate transporter/retrovirus receptor family. Kidney Int 49:959–963

    Article  PubMed  CAS  Google Scholar 

  18. Kavanaugh MP, Miller DG, Zhang W, Law W, Kozak SL, Kabat D, Miller AD (1994) Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc Natl Acad Sci USA 91:7071–7075

    Article  PubMed  CAS  Google Scholar 

  19. Olah Z, Lehel C, Anderson WB, Eiden MV, Wilson CA (1994) The cellular receptor for gibbon ape leukemia virus is a novel high affinity sodium-dependent phosphate transporter. J Biol Chem 269:25426–25431

    PubMed  CAS  Google Scholar 

  20. Karim-Jimenez Z, Hernando N, Biber J, Murer H (2001) Molecular determinants for apical expression of the renal type IIa Na+/Pi-cotransporter. Pflugers Arch 442:782–790

    Article  PubMed  CAS  Google Scholar 

  21. Lambert G, Forster I, Stange G, Kohler K, Biber J, Murer H (2001) Cysteine mutagenesis reveals novel structurefunction features within the predicted third extracellular loop of the type IIa Na(+)/P(i) cotransporter. J Gen Physiol 117:533–546

    Article  PubMed  CAS  Google Scholar 

  22. Traebert M, Kohler K, Lambert G, Biber J, Forster I, Murer H (2001) Investigating the surface expression of the renal type IIa Na/Pi-cotransporter in Xenopus laevis oocytes. J Membr Biol 180:83–90

    Article  PubMed  CAS  Google Scholar 

  23. Kohler K, Forster JC, Stange G, Biber J, Murer H (2002) Identification of functionally important sites in the first intracellular loop of the NaPi-IIa cotransporter. Am J Physiol Renal Physiol 282:F687–F696

    PubMed  CAS  Google Scholar 

  24. Crenshaw TD (2001) Calcium, phosphorus, vitamin D and vitamin K in swine nutrition. In: Lewis AJ, Southern LL (eds) swine nutrition, 2nd edn. CRC Press, New York, pp 187–223

    Google Scholar 

  25. Kari LS, James CF, Radcliffe JS (2010) Sodium-dependent phosphate uptake in the jejunum is post-transcriptionally regulated in pigs fed a low-phosphorus diet and is independent of dietary calcium concentration. J Nutr 140:731–736

    Article  Google Scholar 

  26. Murer H, Lotscher M, Kaissling B, Levi M, Kempson SA, Biber J (1996) Renal brush border membrane Na/Pi-cotransport: molecular aspects in PTH-dependent and dietary regulation. Kidney Int 49:1769–1773

    Article  PubMed  CAS  Google Scholar 

  27. Xu H, Bai L, Collins JF, Ghishan FK (2002) Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)(2) vitamin D(3). Am J Physiol Cell Physiol 282:C487–C493

    PubMed  CAS  Google Scholar 

  28. Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue S, Miyamoto K (2004) Intestinal Na-Pi cotransporter adaptation to dietary Pi content in vitamin D receptor null mice. Am J Renal Physiol 287:F39–F47

    Article  CAS  Google Scholar 

  29. Segawa H, Kawakami E, Kaneko I, Kuwahata M, Ito M, Kusano K, Saito H, Fukushima N, Miyamoto K (2003) Effect of hydrolysis-resistant FGF23-R179Q on dietary phosphate regulation of the renal type-II Na/Pi transporter. Pflügers Arch 446:585–592

    Article  PubMed  CAS  Google Scholar 

  30. Pribanic S, Gisler SM, Bacic D, Madjdpour C, Hernando N, Sorribas V, Gantenbein A, Biber J, Murer H (2003) Interactions of MAP17 with the NaPi-IIa/PDZK 1 protein complex in renal proximal tubular cells. Am J Renal Physiol 285:F784–F791

    CAS  Google Scholar 

  31. Fanning AS, Anderson JM (1996) Protein–protein interactions: PDZ domain networks. Curr Biol 6:1385–1388

    Article  PubMed  CAS  Google Scholar 

  32. Arima K, Collins JF, Hines ER, Bai L, Ghishan FK (2000) Molecular cloning of murine sodium-phosphate cotransporter type IIb (Na/P(i)-IIb) gene promoter and characterization of gene structure. Biochim Biophys Acta 1494(1–2):149–154

    PubMed  CAS  Google Scholar 

  33. Arima K, Hines ER, Kiela PR, Drees JB, Collins JF, Chishan FK (2002) Glucocorticoid regulation and glycosylation of mouse intestinal type IIb Na-Pi cotransporter during ontogeny. Am J Physiol Gastrointest Liver Physiol 283:G426–G434

    PubMed  CAS  Google Scholar 

  34. Kuwahara S, Aranami F, Segawa H, Onitsuka A, Honda N, Tominaga R, Hanabusa E, Kaneko I, Sasaki S, Ohi A, Nomura K, Tatsumi S, Kido S, Ito M, Miyamoto K (2012) Identification and functional analysis of a splice variant of mouse sodium-dependent phosphate transporter Npt2c. J Med Invest 59(1–2):116–126

    Article  PubMed  Google Scholar 

  35. Xu H, Bai L, Collins JF, Ghishan FK (1999) Molecular cloning, functional characterization, tissue distribution, and chromosomal localization of a human, small intestinal sodium-phosphate (Na-Pi) transporter (SLC34A2). Genomics 62:281–284

    Article  PubMed  CAS  Google Scholar 

  36. Clerici C, Soler P, Saumon G (1991) Sodium-dependent phosphate and alanine transports but sodium-independent hexose transport in type II alveolar epithelial cells in primary culture. Biochim Biophys Acta 1063:27–35

    Article  PubMed  CAS  Google Scholar 

  37. Yaoxian X, ChingHei Y, Iwan S, Cosmina A, Jurg B, Andrea W, Florian L, Trevor GC (2003) Sodium-inorganic phosphate cotransporter NaPi-IIb in the epididymis and its potential role in male fertility studied in a transgenic mouse model. Biology of Reprod 69:1135–1141

    Article  Google Scholar 

  38. Werner A, Kinne RKH (2001) Evolution of the Na–Pi cotransporter systems. Am J Physiol Regul Integr Comp Physiol 280:R301–R312

    PubMed  CAS  Google Scholar 

  39. Graham C, Nalbant P, Scholermann B, Hentschel K, Kinne RKH, Werner A (2003) Characterization of a type IIb sodium-phosphate cotransporter from zebrafish (Danio rerio) kidney. Am J Physiol Renal Physiol 284:F727–F736

    PubMed  CAS  Google Scholar 

  40. Sugiura Shozo (2009) Identification of intestinal phosphate transporters in fishes and shellfishes. Fish Sci 75:99–108

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by Grants from the National Natural Science Foundation of China (No.31172218), National Scientific and Technological Supporting Project (No. 2011BAD26B03), the Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Rejun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhifeng, X., Rejun, F., Longchang, H. et al. Molecular cloning and functional characterization of swine sodium dependent phosphate cotransporter type II b (NaPi-IIb) gene. Mol Biol Rep 39, 10557–10564 (2012). https://doi.org/10.1007/s11033-012-1941-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1941-0

Keywords

Navigation