Skip to main content
Log in

Identification and characterization of selenate- and selenite-responsive genes in a Se-hyperaccumulator Astragalus racemosus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Plants with capacity to accumulate high levels of selenium (Se) are desired for phytoremediation and biofortification. Plants of genus Astragalus accumulate and tolerate high levels of Se, but their slow growth, low biomass and non-edible properties limit their direct utilization. Genetic engineering may be an alternative way to produce edible or high biomass Se-accumulating plants. The first step towards this goal is to isolate genes that are responsible for Se accumulation and tolerance. Later, these genes can be introduced into other edible and high biomass plants. In the present study, we applied fluorescent differential display to analyze the transcript profile of Se-hyperaccumulator A. racemosus treated with 20 μM selenate (K2SeO4) for 2 weeks. Among 125 identified Se-responsive candidate genes, the expression levels of nine were induced or suppressed more than twofold by selenate treatment in two independent experiments while 14 showed such changes when treated with selenite (K2SeO3). Six of them were found to respond to both selenate and selenite treatments. A novel gene CEJ367 was found to be highly induced by both selenate (1,920-fold) and selenite (579-fold). Root- or shoot-preferential expression of nine genes was further investigated. These identified genes may allow us to create Se-enriched transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Birringer M, Pilawa S, Flohe L (2002) Trends in selenium biochemistry. Nat Prod Rep 19:693–718

    Article  PubMed  CAS  Google Scholar 

  2. Whanger PD (2002) Selenocompounds in plants and animals and their biological significance. J Am College Nutr 21:223–232

    CAS  Google Scholar 

  3. Stadtman TC (1996) Selenocysteine. Annu Rev Biochem 65:83–100

    Article  PubMed  CAS  Google Scholar 

  4. Finley JW (2005) Proposed criteria for assessing the efficacy of cancer reduction by plant foods enriched in carotenoids, glucosinolates, polyphenols and selenocompounds. Ann Bot 95:1075–1096

    Article  PubMed  CAS  Google Scholar 

  5. Imam SZ, Ali SF (2000) Selenium, an antioxidant, attenuates methamphetamine-induced dopaminergic toxicity and peroxy-nitrite generation. Brain Res 855:186–191

    Article  PubMed  CAS  Google Scholar 

  6. Gartner R, Gasnier BCH, Dietrich JW, Krebs B, Angstwurm MWA (2002) Selenium supplementation in patients with autoimmune thyroiditis decreases thyroid peroxidase antibodies concentrations. J Clin Endocrinol Metab 87:1687–1691

    Article  PubMed  CAS  Google Scholar 

  7. Baum MK, Shor-Posner G, Lai S, Zhang G, Lai H, Fletcher MA, Sauberlich H, Page JB (1997) High risk of HIV-related mortality is associated with selenium deficiency. J Acquir Immune Defic Syndr Hum Retrovirol 15:370–374

    Article  PubMed  CAS  Google Scholar 

  8. Schwartz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 70:3292–3293

    Article  Google Scholar 

  9. Vinceti M, Wei ET, Malagoli C, Bergomi M, Vivoli G (2001) Adverse health effects of selenium in humans. Rev Environ Health 16:233–251

    Article  PubMed  CAS  Google Scholar 

  10. Berken A, Mulholland MM, LeDuc DL, Terry N (2002) Genetic engineering of plants to enhance selenium phytoremediation. Crit Rev Plant Sci 21:567–582

    Article  CAS  Google Scholar 

  11. Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14:436–442

    Article  PubMed  CAS  Google Scholar 

  12. Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolicfate in plants. Photosynth Res 86:373–389

    Article  PubMed  CAS  Google Scholar 

  13. Zhang Y, Gladyshev VN (2009) Comparative genomics of trace elements: emerging dynamic view of trace element utilization and function. Chem Rev 109:4828–4861

    Article  PubMed  CAS  Google Scholar 

  14. Quinn CF, Galeas ML, Freeman JL, Pilon-Smits EAH (2007) Selenium: deterrence, toxicity, and adaptation. Integr Environ Assess Man 3:460–462

    Article  CAS  Google Scholar 

  15. Brown TA, Shrift A (1981) Exclusion of selenium from proteins of selenium-tolerant Astragalus Species. Plant Physiol 67:1051–1053

    Article  PubMed  CAS  Google Scholar 

  16. Terry N, Zayed AM, De Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432

    Article  PubMed  CAS  Google Scholar 

  17. Wilber CG (1980) Toxicology of selenium: a review. Clin Toxicol 17:171–230

    Article  PubMed  CAS  Google Scholar 

  18. Whanger PD (1989) China, a country with both selenium deficiency and toxicity: some thoughts and impressions. J Nutr 119:1236–1239

    PubMed  CAS  Google Scholar 

  19. White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meacham MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    Article  PubMed  CAS  Google Scholar 

  20. Davis AM (1972) Selenium accumulation in Astragalus species. Agron J 64:751–754

    Article  CAS  Google Scholar 

  21. Trelease SF, Trelease HM (1939) Physiological differentiation in Austragalus with reference to selenium. Am J Bot 26:530–535

    Article  CAS  Google Scholar 

  22. Pickering IJ, Prince RC, Salt DE, George GN (2000) Quantitative, chemically specific imaging of selenium transformation in plants. Proc Natl Acad Sci USA 97:10717–10722

    Article  PubMed  CAS  Google Scholar 

  23. Pickering IJ, Wright C, Bubner B, Ellis D, Persans M, Yu E, George GN, Prince RC, Salt DE (2003) Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460–1467

    Article  PubMed  CAS  Google Scholar 

  24. Sors TG, Ellis DR, Na GN, Lahner B, Lee B, Leustek T, Pickering IJ, Salt DE (2005) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797

    Article  PubMed  CAS  Google Scholar 

  25. Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP, Pilon-Smits EAH (2006) Spatial imaging, speciation, and quantification of selenium in the hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant Physiol 142:124–134

    Article  PubMed  CAS  Google Scholar 

  26. Van Huysen T, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation potential of transgenic Brassica juncea overexpressing ATP sulfurylase or cystathionine-gamma-synthase. Int J Phytoremediat 6:111–118

    Article  Google Scholar 

  27. Sors TG, Martin CP, David E, Salt DE (2009) Characterization of selenocysteine methyltransferases from Astragalus species with contrasting selenium accumulation capacity. Plant J 59:110–122

    Article  PubMed  CAS  Google Scholar 

  28. Neuhierl B, Thanbichler M, Lottspeich F, Bock A (1999) A family of S-methylmethionine-dependent thiol/selenol methyltransferases. Role in selenium tolerance and evolutionary relation. J Biol Chem 274:5407–5414

    Article  PubMed  CAS  Google Scholar 

  29. Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B, Wood KV, Harris HH, Pickering IJ, Salt DE (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–11

    Article  PubMed  Google Scholar 

  30. McKenzie MJ, Hunter DA, Pathirana R, Watson LM, Joyce NI, Matich AJ, Rowan DD, Brummell DA (2009) Accumulation of an organic anticancer selenium compound in a transgenic Solanaceous species shows wider applicability of the selenocysteine methyltransferase transgene from selenium hyperaccumulators. Transgenic Res 18:407–424

    Article  PubMed  CAS  Google Scholar 

  31. Bell PF, Parker DR, Page AL (1992) Contrasting selenate-sulfate interactions in selenium-accumulating and non accumulating plant species. Soil Sci Soc Am J 56:1818–1824

    Article  CAS  Google Scholar 

  32. Mikkelsen RL, Wan HF (1990) The effect of selenium on sulfur uptake by barley and rice. Plant Soil 121:151–153

    Article  CAS  Google Scholar 

  33. Tamaoki M, Freeman JL, Pilon-Smits EAH (2008) Cooperative ethylene and jasmonic acid signaling regulates selenate resistance in Arabidopsis. Plant Physiol 146:1219–1230

    Article  PubMed  CAS  Google Scholar 

  34. Van Hoewyk D, Takahashi H, Hess A, Tamaoki M, Pilon-Smits EAH (2008) Transcriptome biochemical analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plantarum 132:236–253

    Google Scholar 

  35. Byrne S, Durandeau K, Nagy I, Barth S (2010) Identification of ABC transporters from Lolium perenne L. that are regulated by toxic levels of Selenium. Planta 231:901–911

    Article  PubMed  CAS  Google Scholar 

  36. Freeman JL, Tamaoki M, Stushnoff C, Quinn CF, Cappa JJ, Devonshire J, Fakra SC, Marcus MA, McGrath SP, Van Hoewyk D, Pilon-Smits EAH (2010) Molecular mechanisms of selenium tolerance and hyperaccumulation in Stanleya pinnata. Plant Physiol 153:1630–1652

    Article  PubMed  CAS  Google Scholar 

  37. Martin JL, Shrift A, Gerlach ML (1971) Use of 75Se-selenite for the study of selenium metabolism in Astragalus. Phytochemistry 10:945–952

    Article  CAS  Google Scholar 

  38. Hung CY, Xie JH (2008) Development of an efficient plant regeneration system for the selenium-hyperaccumulator Astragalus recemosus and the nonaccumulator Astragalus canadensis. HortScience 43:2138–2142

    Google Scholar 

  39. Darlington DE, Hung CY, Xie JH (2009) Developing an Agrobacterium tumefaciens—mediated genetic transformation for a selenium-hyperaccumulator Astragalus racemosus. Plant Cell Tiss Org Cult 99:157–165

    Article  CAS  Google Scholar 

  40. Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  41. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  42. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  43. Hung CY, Sun YH, Chen JJ, Darlington DE, Williams AL, Burkey KO, Xie JH (2010) Identification of a Mg-protoporphyrin IX monomethyl ester cyclase homologue, EaZIP, involved in variegation of Epipremnum aureum ‘Golden Pothos’ is achieved through a unique method of comparative study using tissue regenerated plants. J Exp Bot 61:1483–1493

    Article  PubMed  CAS  Google Scholar 

  44. Broyer TC, Huston RP, Johnson CM (1972) Selenium and nutrition of Astragalus I. Effects of selenite or selenate supply on growth and selenium content. Plant Soil 36:635–649

    Article  CAS  Google Scholar 

  45. Shrift A, Ulrich J (1969) Transport of selenate and selenite into Astragalus roots. Plant Physiol 44:893–896

    Article  PubMed  CAS  Google Scholar 

  46. Poggi V, Del Vescovo V, Di Sanza C, Negri R, Hochkoeppler A (2008) Selenite transiently represses transcription of photosynthesis-related genes in potato leaves. Photosynth Res 95:63–71

    Article  PubMed  CAS  Google Scholar 

  47. Kellogg EA, Juliano ND (1997) The structure and function of RuBisCo and their implications for systematic studies. Am J Bot 84:413–428

    Article  PubMed  CAS  Google Scholar 

  48. Kyozuka J, McElroy D, Hayakawa T, Xie Y, Wu R, Shimamoto K (1993) Light-regulated and cell-specific expression of tomato rbcSgusA and rice rbcS-gusA fusion genes in transgenic rice. Plant Physiol 102:991–1000

    Article  PubMed  CAS  Google Scholar 

  49. Raab T, Lopez-Raez JA, Klein D, Caballero JL, Moyano E, Schwab W, Munoz-Blanco J (2006) FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase. Plant Cell 18:1023–1037

    Article  PubMed  CAS  Google Scholar 

  50. Bai C, Richman R, Elledge SJ (1994) Human cyclin F. EMBO J 13:6087–6098

    PubMed  CAS  Google Scholar 

  51. Craig KL, Tyers M (1999) The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol 72:299–328

    Article  PubMed  CAS  Google Scholar 

  52. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  PubMed  CAS  Google Scholar 

  53. Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451

    Article  PubMed  CAS  Google Scholar 

  54. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  CAS  Google Scholar 

  55. Larizza A, Makalowski W, Pesole G, Saccone C (2002) Evolutionary dynamics of mammalian mRNA untranslated regions by comparative analysis of orthologous human, artiodactyl and rodent gene pairs. Comput Chem 26:479–490

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Kimberly Hutchison and Dr. Wayne P. Robarge of the Analytical Laboratory Service at North Carolina State University for analyzing Se contents. Special thanks to Dr. Ying-Hsuan Sun of North Carolina State University for help with sequence analysis. This work was supported by a United States Department of Agriculture—Cooperative State Research, Education, and Extension Service grant (2009-35318-05032), a Biotechnology Research Grant (2007-BRG-1223) from the North Carolina Biotechnology Center, and a startup fund from the Golden LEAF Foundation to the Biomanufacturing Research Institute & Technology Enterprise (BRITE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahua Xie.

Electronic supplementary material

Supplementary data associated with this article can be found in the online version.

Supplementary material 1 (XLS 32 kb)

Supplementary material 2 (PPT 210 kb)

Supplementary material 3 (XLS 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, CY., Holliday, B.M., Kaur, H. et al. Identification and characterization of selenate- and selenite-responsive genes in a Se-hyperaccumulator Astragalus racemosus . Mol Biol Rep 39, 7635–7646 (2012). https://doi.org/10.1007/s11033-012-1598-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1598-8

Keywords

Navigation