Skip to main content
Log in

Ascochlorin suppresses TGF-β1-induced PAI-1 expression through the inhibition of phospho-EGFR in rat kidney fibroblast cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Fibrosis is induced by the excessive and abnormal deposition of extracellular matrix (ECM) with various growth factors in tissues. Transforming growth factor-β1 (TGF-β1), the growth factor involved in fibrosis, modulates ECM synthesis and accumulation. TGF-β1 enhances the production of stimulators of ECM synthesis such as plasminogen activator inhibitor type 1 (PAI-1). As such, PAI-1 expression directly influences the proteolysis, invasion, and accumulation of ECM. It was shown in this study that ascochlorin, a prenylpenl antiobiotic, prevents the expression of profibrotic factors, such as PAI-1 and collagen type I, and that the TGF-β1-induced PAI-1 promoter activity is inhibited by ascochlorin. Ascochlorin abolishes the phosphorylation of the EGFR-MEK-ERK signaling pathway to regulate the TGF-β1-induced expression of PAI-1 without the inhibition of TβRII phosphorylation. Furthermore, the MEK inhibitor and EGFR siRNA block PAI-1 expression, and the Raf-1, MEK, and ERK signaling pathways for the regulation of PAI-1 expression. Ascochlorin suppresses the matrix metalloproteinases (MMPs) activity to activate the heparin-binding EGF-like growth factor (HB-EGF), to induce the phosphorylation of EGFR, and the MMPs inhibitor suppresses EGFR phosphorylation and the PAI-1 mRNA levels. These results suggest that ascochlorin prevents the expression of PAI-1 via the inhibition of an EGFR-dependent signal transduction pathway activated by MMPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PAI-1:

Plasminogen activator inhibitor-1

EGFR:

Epidermal growth factor receptor

MMP:

Matrix metalloproteinase

TGF-β:

Transforming growth factor-β

References

  1. Li F, Zeng B, Chai Y, Cai P, Fan C, Cheng T (2009) The linker region of Smad2 mediates TGF-beta-dependent ERK2-induced collagen synthesis. Biochem Biophys Res Commun 386:289–293. doi:10.1016/j.bbrc.2009.05.084

    Article  PubMed  CAS  Google Scholar 

  2. Verrecchia F, Mauviel A (2004) TGF-beta and TNF-alpha: antagonistic cytokines controlling type I collagen gene expression. Cell Signal 16:873–880. doi:10.1016/j.cellsig.2004.02.007

    Article  PubMed  CAS  Google Scholar 

  3. Dong C, Zhu S, Wang T, Yoon W, Goldschmidt-Clermont PJ (2002) Upregulation of PAI-1 is mediated through TGF-beta/Smad pathway in transplant arteriopathy. J Heart Lung Transplant 21:999–1008. doi:10.1016/S1053-2498(02)00403-5

    Article  PubMed  Google Scholar 

  4. Cho HJ, Kang JH, Kim T, Park KK, Kim CH, Lee IS, Min KS, Magae J, Nakajima H, Bae YS, Chang YC (2009) Suppression of PAI-1 expression through inhibition of the EGFR-mediated signaling cascade in rat kidney fibroblast by ascofuranone. J Cell Biochem 107:335–344. doi:10.1002/jcb.22130

    Article  PubMed  CAS  Google Scholar 

  5. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113:685–700. doi:10.1016/S0092-8674(03)00432-X

    Article  PubMed  CAS  Google Scholar 

  6. Tahashi Y, Matsuzaki K, Date M, Yoshida K, Furukawa F, Sugano Y, Matsushita M, Himeno Y, Inagaki Y, Inoue K (2002) Differential regulation of TGF-beta signal in hepatic stellate cells between acute and chronic rat liver injury. Hepatology 35:49–61. doi:10.1053/jhep.2002.30083

    Article  PubMed  CAS  Google Scholar 

  7. Verrecchia F, Mauviel A (2002) Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol 118:211–215. doi:10.1046/j.1523-1747.2002.01641.x

    Article  PubMed  CAS  Google Scholar 

  8. Mulsow JJ, Watson RW, Fitzpatrick JM, O’Connell PR (2005) Transforming growth factor-beta promotes pro-fibrotic behavior by serosal fibroblasts via PKC and ERK1/2 mitogen activated protein kinase cell signaling. Ann Surg 242:880–887. doi:10.1097/01.sla.0000189606.58343.cd discussion 887–889

    Article  PubMed  Google Scholar 

  9. Hayashida T, Poncelet AC, Hubchak SC, Schnaper HW (1999) TGF-beta1 activates MAP kinase in human mesangial cells: a possible role in collagen expression. Kidney Int 56:1710–1720. doi:10.1046/j.1523-1755.1999.00733.x

    Article  PubMed  CAS  Google Scholar 

  10. Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E (1999) Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J Biol Chem 274:27161–27167. doi:10.1074/jbc.274.38.27161

    Article  PubMed  CAS  Google Scholar 

  11. Lee HB, Ha H (2005) Plasminogen activator inhibitor-1 and diabetic nephropathy. Nephrology (Carlton) 10 Suppl:S11–S13. doi:10.1111/j.1440-1797.2005.00449.x

  12. Rerolle JP, Hertig A, Nguyen G, Sraer JD, Rondeau EP (2000) Plasminogen activator inhibitor type 1 is a potential target in renal fibrogenesis. Kidney Int 58:1841–1850. doi:10.1111/j.15231755.2000.00355.x

    Article  PubMed  CAS  Google Scholar 

  13. Providence KM, White LA, Tang J, Gonclaves J, Staiano-Coico L, Higgins PJ (2002) Epithelial monolayer wounding stimulates binding of USF-1 to an E-box motif in the plasminogen activator inhibitor type 1 gene. J Cell Sci 115:3767–3777. doi:10.1242/jcs.00051

    Article  PubMed  CAS  Google Scholar 

  14. Providence KM, Staiano-Coico L, Higgins PJ (2003) A quantifiable in vitro model to assess effects of PAI-1 gene targeting on epithelial cell motility. Methods Mol Med 78:293–303. doi:10.1385/1-59259-332-1:293

    PubMed  CAS  Google Scholar 

  15. Gaedeke J, Noble NA, Border WA (2005) Curcumin blocks fibrosis in anti-Thy 1 glomerulonephritis through up-regulation of heme oxygenase 1. Kidney Int 68:2042–2049. doi:10.1111/j.1523-1755.2005.00658.x

    Article  PubMed  CAS  Google Scholar 

  16. Sasaki H, Hosokawa T, Sawada M, Ando K (1973) Isolation and structure of ascofuranone and ascofranol, antibiotics with hypolipidemic activity. J Antibiot (Tokyo) 26:676–680

    CAS  Google Scholar 

  17. Sawada M, Hosokawa T, Okutomi T, Ando K (1973) Hypolipidemic property of ascofuranone. J Antibiot (Tokyo) 26:681–686

    CAS  Google Scholar 

  18. Hosokawa T, Okutomi T, Sawada M, Ando K, Tamura G (1981) Unusual concentration of urine and prevention of polydipsia by fungal prenylphenols in DOCA hypertensive rats. Eur J Pharmacol 69:429–438. doi:10.1016/0014-2999(81)90446-5

    Article  PubMed  CAS  Google Scholar 

  19. Magae J, Hayasaki J, Matsuda Y, Hotta M, Hosokawa T, Suzuki S, Nagai K, Ando K, Tamura G (1988) Antitumor and antimetastatic activity of an antibiotic, ascofuranone, and activation of phagocytes. J Antibiot (Tokyo) 41:959–965

    CAS  Google Scholar 

  20. Hosokawa T, Ando K, Tamura G (1985) An ascochlorin derivative, AS-6, reduces insulin resistance in the genetically obese diabetic mouse, db/db. Diabetes 34:267–274

    Article  PubMed  CAS  Google Scholar 

  21. Magae J, Suzuki S, Nagai K, Yamasaki M, Ando K, Tamura G (1986) In vitro effects of an antitumor antibiotic, ascofuranone, on the murine immune system. Cancer Res 46:1073–1078

    PubMed  CAS  Google Scholar 

  22. Ahn JD, Morishita R, Kaneda Y, Kim HJ, Kim YD, Lee HJ, Lee KU, Park JY, Kim YH, Park KK, Chang YC, Yoon KH, Kwon HS, Park KG, Lee IK (2004) Transcription factor decoy for AP-1 reduces mesangial cell proliferation and extracellular matrix production in vitro and in vivo. Gene Ther 11:916–923. doi:10.1038/sj.gt.3302236

    Article  PubMed  CAS  Google Scholar 

  23. Huang Y, Wongamorntham S, Kasting J, McQuillan D, Owens RT, Yu L, Noble NA, Border W (2006) Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int 69:105–113. doi:10.1038/sj.ki.5000011

    Article  PubMed  CAS  Google Scholar 

  24. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888. doi:10.1038/47260

    PubMed  CAS  Google Scholar 

  25. Lucchesi PA, Sabri A, Belmadani S, Matrougui K (2004) Involvement of metalloproteinases 2/9 in epidermal growth factor receptor transactivation in pressure-induced myogenic tone in mouse mesenteric resistance arteries. Circulation 110:3587–3593. doi:10.1161/01.CIR.0000148780.36121.47

    Article  PubMed  CAS  Google Scholar 

  26. Lyon CJ, Hsueh WA (2003) Effect of plasminogen activator inhibitor-1 in diabetes mellitus and cardiovascular disease. Am J Med 115 Suppl 8A:62S–68S. doi:10.1016/j.amjmed.2003.08.014

  27. Ohba K, Miyata Y, Kanda S, Koga S, Hayashi T, Kanetake H (2005) Expression of urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor and plasminogen activator inhibitors in patients with renal cell carcinoma: correlation with tumor associated macrophage and prognosis. J Urol 174:461–465. doi:10.1097/01.ju.0000165150.46006.92

    Article  PubMed  Google Scholar 

  28. Hosokawa T, Sawada M, Ando K, Tamura G (1981) Alteration of cholesterol metabolism by 4-O-methylascochlorin in rats. Lipids 16:433–438. doi:10.1007/BF02535011

    Article  PubMed  CAS  Google Scholar 

  29. Hong S, Park KK, Magae J, Ando K, Lee TS, Kwon TK, Kwak JY, Kim CH, Chang YC (2005) Ascochlorin inhibits matrix metalloproteinase-9 expression by suppressing activator protein-1-mediated gene expression through the ERK1/2 signaling pathway: inhibitory effects of ascochlorin on the invasion of renal carcinoma cells. J Biol Chem 280:25202–25209. doi:10.1074/jbc.M413985200

    Article  PubMed  CAS  Google Scholar 

  30. Kang JH, Kim JK, Park WH, Park KK, Lee TS, Magae J, Nakajima H, Kim CH, Chang YC (2007) Ascochlorin suppresses oxLDL-induced MMP-9 expression by inhibiting the MEK/ERK signaling pathway in human THP-1 macrophages. J Cell Biochem 102:506–514. doi:10.1002/jcb.21312

    Article  PubMed  CAS  Google Scholar 

  31. Jeong JH, Chang YC Ascochlorin, an isoprenoid antibiotic, induces G1 arrest via downregulation of c-Myc in a p53-independent manner. Biochem Biophys Res Commun 398:68–73. doi:10.1016/j.bbrc.2010.06.037

  32. Jeong JH, Kang SS, Park KK, Chang HW, Magae J, Chang YC p53-independent induction of G1 arrest and p21WAF1/CIP1 expression by ascofuranone, an isoprenoid antibiotic, through downregulation of c-Myc. Mol Cancer Ther 9:2102–2113. doi:10.1158/1535-7163.MCT-09-1159

  33. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100. doi:10.1093/emboj/17.11.3091

    Article  PubMed  CAS  Google Scholar 

  34. Samarakoon R, Higgins CE, Higgins SP, Kutz SM, Higgins PJ (2005) Plasminogen activator inhibitor type-1 gene expression and induced migration in TGF-beta1-stimulated smooth muscle cells is pp60(c-src)/MEK-dependent. J Cell Physiol 204:236–246. doi:10.1002/jcp.20279

    Article  PubMed  CAS  Google Scholar 

  35. Xu KP, Ding Y, Ling J, Dong Z, Yu FS (2004) Wound-induced HB-EGF ectodomain shedding and EGFR activation in corneal epithelial cells. Invest Ophthalmol Vis Sci 45:813–820. doi:10.1167/iovs.03-0851

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This stuay was supported by the Grant of the Korean Ministry of Education, Science and Technology (The Regional Core Research Program/Anti-aging and Well-being Research Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Chae Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, HJ., Kang, JH., Jeong, JH. et al. Ascochlorin suppresses TGF-β1-induced PAI-1 expression through the inhibition of phospho-EGFR in rat kidney fibroblast cells. Mol Biol Rep 39, 4597–4603 (2012). https://doi.org/10.1007/s11033-011-1251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1251-y

Keywords

Navigation