Skip to main content

Advertisement

Log in

CXCL12 G801A polymorphism and breast cancer risk: a meta-analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The G801A polymorphism in the CXCL12 gene has been implicated in breast cancer risk. However, the published findings are inconsistent. We therefore performed a meta-analysis to investigate this relationship. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of the association. The pooled ORs were performed for codominant model, dominant model, and recessive model, respectively. Five published case–control studies, including 1,058 breast cancer cases and 1,023 controls were identified. No study had a deviation from the Hardy–Weinberg equilibrium (HWE) in controls. We found that the CXCL12 G801A (rs1801157) polymorphism was associated with a significantly increased risk of breast cancer risk when all studies were pooled into the meta-analysis (codomiant model: AA versus GG, OR = 1.64, 95% CI = 1.16–2.33; GA versus GG, OR = 1.42, 95% CI = 1.18–1.71; dominant model: AA/GA versus GG, OR = 1.44, 95% CI = 1.21–1.72). Furthermore, Egger’s test did not show any evidence of publication bias (P > 0.05 for the dominant model). In conclusion, the results suggest that the CXCL12 G801A polymorphism may be a low-penetrant risk factor for developing breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Smigal C, Jemal A, Ward E, Cokkinides V, Smith R, Howe HL, Thun M (2006) Trends in breast cancer by race and ethnicity: update 2006. CA Cancer J Clin 56:168–183

    Article  PubMed  Google Scholar 

  2. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85

    Article  PubMed  CAS  Google Scholar 

  3. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127

    Article  PubMed  CAS  Google Scholar 

  4. Caux C, Ait-Yahia S, Chemin K, de Bouteiller O, Dieu-Nosjean MC, Homey B, Massacrier C, Vanbervliet B, Zlotnik A, Vicari A (2000) Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol 22:345–369

    Article  PubMed  CAS  Google Scholar 

  5. Rossi D, Zlotnik A (2000) The biology of chemokines and their receptors. Annu Rev Immunol 18:217–242

    Article  PubMed  CAS  Google Scholar 

  6. Balkwill F (2003) Chemokine biology in cancer. Semin Immunol 15:49–55

    Article  PubMed  CAS  Google Scholar 

  7. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599

    Article  PubMed  CAS  Google Scholar 

  8. Olson KE, Booth GC, Poulin F, Sonenberg N, Beretta L (2009) Impaired myelopoiesis in mice lacking the repressors of translation initiation, 4E-BP1 and 4E-BP2. Immunology 128:e376–e384

    Article  PubMed  Google Scholar 

  9. Ben-Baruch A (2003) Host microenvironment in breast cancer development: inflammatory cells, cytokines and chemokines in breast cancer progression: reciprocal tumor-microenvironment interactions. Breast Cancer Res 5:31–36

    Article  PubMed  CAS  Google Scholar 

  10. Kato M, Kitayama J, Kazama S, Nagawa H (2003) Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res 5:R144–R150

    Article  PubMed  CAS  Google Scholar 

  11. Winkler C, Modi W, Smith MW, Nelson GW, Wu X, Carrington M, Dean M, Honjo T, Tashiro K, Yabe D et al (1998) Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. ALIVE Study, Hemophilia Growth and Development Study (HGDS), Multicenter AIDS Cohort Study (MACS), Multicenter Hemophilia Cohort Study (MHCS), San Francisco City Cohort (SFCC). Science 279:389–393

    Article  PubMed  CAS  Google Scholar 

  12. Watanabe MA, de Oliveira Cavassin GG, Orellana MD, Milanezi CM, Voltarelli JC, Kashima S, Covas DT (2003) SDF-1 gene polymorphisms and syncytia induction in Brazilian HIV-1 infected individuals. Microb Pathog 35:31–34

    Article  PubMed  CAS  Google Scholar 

  13. Handoll HH (2006) Systematic reviews on rehabilitation interventions. Arch Phys Med Rehabil 87:875

    Article  PubMed  Google Scholar 

  14. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    PubMed  CAS  Google Scholar 

  15. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  PubMed  CAS  Google Scholar 

  16. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  PubMed  CAS  Google Scholar 

  17. Zafiropoulos A, Crikas N, Passam AM, Spandidos DA (2004) Significant involvement of CCR2–64I and CXCL12–3a in the development of sporadic breast cancer. J Med Genet 41:e59

    Article  PubMed  CAS  Google Scholar 

  18. Razmkhah M, Talei AR, Doroudchi M, Khalili-Azad T, Ghaderi A (2005) Stromal cell-derived factor-1 (SDF-1) alleles and susceptibility to breast carcinoma. Cancer Lett 225:261–266

    Article  PubMed  CAS  Google Scholar 

  19. de Oliveira KB, Oda JM, Voltarelli JC, Nasser TF, Ono MA, Fujita TC, Matsuo T, Watanabe MA (2009) CXCL12 rs1801157 polymorphism in patients with breast cancer, Hodgkin’s lymphoma, and non-Hodgkin’s lymphoma. J Clin Lab Anal 23:387–393

    Article  PubMed  Google Scholar 

  20. Lin GT, Tseng HF, Yang CH, Hou MF, Chuang LY, Tai HT, Tai MH, Cheng YH, Wen CH, Liu CS et al (2009) Combinational polymorphisms of seven CXCL12-related genes are protective against breast cancer in Taiwan. OMICS 13:165–172

    Article  PubMed  CAS  Google Scholar 

  21. Kruszyna L, Lianeri M, Rubis B, Knula H, Rybczynska M, Grodecka-Gazdecka S, Jagodzinski PP (2010) CXCL12-3′ G801A polymorphism is not a risk factor for breast cancer. DNA Cell Biol 29:423–427

    Article  PubMed  CAS  Google Scholar 

  22. Hassan S, Baccarelli A, Salvucci O, Basik M (2008) Plasma stromal cell-derived factor-1: host derived marker predictive of distant metastasis in breast cancer. Clin Cancer Res 14:446–454

    Article  PubMed  CAS  Google Scholar 

  23. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are fully responsible for all content and editorial decisions and did not receive financial support or other form of compensation related to the development of the manuscript.

Conflicts of interest

The authors declare no any conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangming Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, W., Cao, X., Xi, L. et al. CXCL12 G801A polymorphism and breast cancer risk: a meta-analysis. Mol Biol Rep 39, 2039–2044 (2012). https://doi.org/10.1007/s11033-011-0951-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0951-7

Keywords

Navigation