Skip to main content

Advertisement

Log in

Computational identification of microRNAs in peach expressed sequence tags and validation of their precise sequences by miR-RACE

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Twenty-two potential miRNAs from seven miRNA families were first predicted from more than 80,857 EST sequences of peach (Prunus persica). Using two specific 5′ and 3′ miRNA RACE (miR-RACE) PCR reactions and sequence-directed cloning, we accurately determined the precise sequences, especially both ends, of eight candidate miRNAs. The sequencing results demonstrated that the ppe-miRNAs were conserved to those that were predicted computationally except ppe-miR171b. We validated the existence of two members (ppe-miR171a and miR171b) of the miR171 family in peach that belonged to different precursors. qRT-PCR was further employed in analyzing expression of the eight miRNAs in peach leaves, flowers, and fruits at different developing stages, where some of the miRNAs showed tissue-specific expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bartel DP (2004) MicroRNAs, genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  2. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  CAS  Google Scholar 

  3. Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322

    Article  PubMed  CAS  Google Scholar 

  4. Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  PubMed  CAS  Google Scholar 

  5. Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A (2003) Radial patterning of Arabidopsis shoots by Class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  PubMed  CAS  Google Scholar 

  6. Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) MicroRNA-mediated repression of rolled leaf specifies maize leaf polarity. Nature 428:84–88

    Article  PubMed  CAS  Google Scholar 

  7. Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  PubMed  CAS  Google Scholar 

  8. Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development, importance of pairing to the micro RNA 5′ region. EMBO J 23:3356–3364

    Article  PubMed  CAS  Google Scholar 

  9. Carra A, Mica E, Gambino G, Pindo M, Moser C, Enrico MP, Schubert A (2009) Cloning and characterization of small non-coding RNAs from grape. Plant J 59:750–763

    Article  PubMed  CAS  Google Scholar 

  10. Moxon S, Jing R, Szittya G, Schwach F, Rusholme Pilcher RL, Moulton V, Dalmay T (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609

    Article  PubMed  CAS  Google Scholar 

  11. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed  CAS  Google Scholar 

  12. Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1–16

    Article  Google Scholar 

  13. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed  CAS  Google Scholar 

  14. Weber MJ (2005) New human and mouse microRNA genes found by homology search. FEBS J 272:59–73

    Article  PubMed  CAS  Google Scholar 

  15. Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65

    Article  PubMed  Google Scholar 

  16. Yin Z, Li C, Han X, Shen F (2008) Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 414:60–66

    Article  PubMed  CAS  Google Scholar 

  17. Zhang BH, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  PubMed  CAS  Google Scholar 

  18. Zhang BH, Pan XP, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229:161–182

    Article  PubMed  CAS  Google Scholar 

  19. Zhang J, Zeng R, Chen J, Liu X, Liao Q (2008) Identification of conserved microRNAs and their targets from Solanum lycopersicum Mill. Gene 423:1–7

    Article  PubMed  CAS  Google Scholar 

  20. Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581:1464–1474

    Article  PubMed  CAS  Google Scholar 

  21. Qiu CX, Xie FL, Zhu YY, Guo K, Huang SQ, Nie L, Yang ZM (2007) Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. Gene 395:49–61

    Article  PubMed  CAS  Google Scholar 

  22. Zhang BH, Wang QL, Wang KB, Pan XP, Liu F, Guo TL, Cobb GP, Anderson TA (2007) Identification of cotton microRNAs and their targets. Gene 397:26–37

    Article  PubMed  CAS  Google Scholar 

  23. Gleave AP, Ampomah-Dwamena C, Berthold S, Dejnoprat S, Karunairetnam S, Nain B, Wang YY, Crowhurst RN, MacDiarmid RM (2008) Identification and characterisation of primary microRNAs from apple (Malus domestica cv. Royal Gala) expressed sequence tags. Tree Genet Genomes 4:343–358

    Article  Google Scholar 

  24. Song C, Fang J, Li X, Liu H, Thomas Chao C (2009) Identification and characterization of 27 conserved microRNAs in citrus. Planta 230:671–685

    Article  PubMed  CAS  Google Scholar 

  25. Song C, Jia Q, Fang J, Li F, Wang C, Zhang Z (2010) Computational identification of citrus microRNAs and target analysis in citrus expressed sequence tags. Plant Biol 12:927–934

    Article  PubMed  CAS  Google Scholar 

  26. Zeng C, Wang W, Zheng Y, Chen X, Bo W, Song S, Zhang W, Peng M (2010) Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants. Nucleic Acids Res 38:981–995

    Article  PubMed  CAS  Google Scholar 

  27. Song C, Fang J, Wang C, Guo L, Nicholas KK, Ma Z (2010) miR-RACE, a new efficient approach to determine the precise sequences of computationally identified trifoliate orange (Poncirus trifoliata) microRNAs. PLoS One 5:e10861

    Article  PubMed  Google Scholar 

  28. Yu HP, Song CN, Jia QD, Wang C, Li F, Kibet KN, Zhang XY, Fang JG (2010) Computational identification of microRNAs in apple expressed sequence tags and validation of their precise sequences by miR-RACE. Physiol Plant 141:56–70

    Article  PubMed  Google Scholar 

  29. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111

    Article  PubMed  CAS  Google Scholar 

  30. Li W, Godzik A (2006) Cd-hit, a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  PubMed  CAS  Google Scholar 

  31. Dsouz M, Larsen N, Overbeek R (1997) Searching for patterns in genomic data. Trends Genet 13:497–498

    Article  Google Scholar 

  32. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  PubMed  CAS  Google Scholar 

  33. Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Gene Res 15:78–91

    Article  CAS  Google Scholar 

  34. Fu H, Tie Y, Xu C, Zhang Z, Zhu J, Shi Y, Jiang H, Sun Z, Zheng X (2005) Identification of human fetal liver miRNAs by a novel method. FEBS Lett 579:3849–3854

    Article  PubMed  CAS  Google Scholar 

  35. Lau NC, Lim LP, Weinstein EG, Bartel DP (2001) An abundant class of tiny RNAs with probable regulatory roles in Caenorthabditis elegans. Science 294:858–862

    Article  PubMed  CAS  Google Scholar 

  36. Aravin A, Tuschl T (2005) Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett 579:5830–5840

    Article  PubMed  CAS  Google Scholar 

  37. Wang JF, Zhou H, Chen YQ, Luo QJ, Qu LH (2004) Identification of 20 microRNAs from Oryza sativa. Nucleic Acids Res 32:1688–1695

    Article  PubMed  CAS  Google Scholar 

  38. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

  39. Shi R, Chiang VL (2005) Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39:519–525

    Article  PubMed  CAS  Google Scholar 

  40. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  41. Zhang BH, Pan X, Anderson TA (2006) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580:3753–3762

    Article  PubMed  CAS  Google Scholar 

  42. Seitz H, Ghildiyal M, Zamore PD (2008) Argonaute loading improves the 5′ precision of both microRNAs and their miRNA strands in flies. Curr Biol 18:147–151

    Article  PubMed  CAS  Google Scholar 

  43. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of MicroRNA on the plant transcriptome. Dev Cell 8:517–527

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Fundamental Research Funds for the Central Universities (No. KYJ200909), a Program of NCET (No. NCET-08-0796), and the Science and Technology Key Project of Ministry of Education of China (No. 109084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinggui Fang.

Additional information

Yanping Zhang and Mingliang Yu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yu, M., Yu, H. et al. Computational identification of microRNAs in peach expressed sequence tags and validation of their precise sequences by miR-RACE. Mol Biol Rep 39, 1975–1987 (2012). https://doi.org/10.1007/s11033-011-0944-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0944-6

Keywords

Navigation