Skip to main content
Log in

Isolation and characterization of three duplicated PISTILLATA genes in Brassica napus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Three coding region cDNAs of duplicated PISTILLATA-like (PI-like) MADS-box genes, BnPI-1, BnPI-2 and BnPI-3, were isolated from B. napus by RT-PCR. The sequence analysis showed that the three PI cDNAs possessed 627, 627 and 625 nucleotides, respectively, and their nucleotide sequences had 96.49–98.72% similarity. Due to a deletion of two nucleotides, the protein sequence in the downstream of the frameshift site was altered in BnPI-3. Therefore, there were only 171 amino acids coded by BnPI-3, while there were 208 ones coded by BnPI-1 or BnPI-2. The deduced amino acid identity between BnPI-1 and BnPI-2 was 97.6% and the amino acid sequence of BnPI-1 and BnPI-2 shared 72.6% identity with BnPI-3. The deduced amino acid sequences of the coded proteins indicated high homology with the members of the PI family of MADS-box proteins. RT-PCR analysis showed that BnPI transcription was only detectable in petals and stamens. The yeast two-hybrid assays results showed that the three BnPI proteins exhibited different dimerization affinities with three BnAP3. BnPI-1 and BnPI-2 could form strong heterodimers with BnAP3. The dimerization affinity of BnPI-1 with BnAP3-4 is the strongest in all the combinations, while the affinity of BnPI-3 with BnAP3-4 is the weakest. The dimerization affinity to BnAP3-4 of BnPI-1 is 3.5 times of that of BnPI-3. The distinguished weak interaction to AP3 of BnPI-3 is probably due to the loss of the PI motif. The divergences of sequence and affinity of protein interaction might reflect some functional divergence of the three PI genes in B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    PubMed  CAS  Google Scholar 

  2. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  3. Davies B, Schwarz-Sommer Z (1994) Control of floral organ identity by homeotic MADS-box transcription factors. Results Probl Cell Differ 20:235–258

    PubMed  CAS  Google Scholar 

  4. Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  PubMed  CAS  Google Scholar 

  5. Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci 1:228–232

    Google Scholar 

  6. Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  CAS  Google Scholar 

  7. Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    Article  PubMed  CAS  Google Scholar 

  8. Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of the MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43:484–516

    Article  PubMed  CAS  Google Scholar 

  9. Yang Y, Fanning L, Jack T (2003) The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J 33:47–59

    Article  PubMed  Google Scholar 

  10. Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    Article  PubMed  CAS  Google Scholar 

  11. Krizek BA, Meyerowitz EM (1996) The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122:11–22

    PubMed  CAS  Google Scholar 

  12. Samach A, Kohalmi SE, Motte P, Datla R, Haughn GW (1997) Divergence of function and regulation of class B floral organ identity genes. Plant Cell 9:559–570

    Article  PubMed  CAS  Google Scholar 

  13. Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–697

    Article  PubMed  CAS  Google Scholar 

  14. Jack T, Fox GL, Meyerowitz EM (1994) Arabidopsis homeotic gene APETALA3 ectopic expression: transcriptional and posttranscriptional regulation determine floral organ identity. Cell 76:703–716

    Article  PubMed  CAS  Google Scholar 

  15. Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560

    Article  PubMed  CAS  Google Scholar 

  16. Honma T, Goto K (2000) The Arabidopsis floral homeotic gene PISTILLATA is regulated by discrete cis-elements responsive to induction and maintenance signals. Development 127:2021–2030

    PubMed  CAS  Google Scholar 

  17. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  PubMed  CAS  Google Scholar 

  18. Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  PubMed  CAS  Google Scholar 

  19. Cui L, Wall PK, Leebens-Mack JH et al (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749

    Article  PubMed  CAS  Google Scholar 

  20. Bodt S, Maere S, Peer YV (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20:591–597

    Article  PubMed  Google Scholar 

  21. Duarte JM, Cui L, Wall PK et al (2005) Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Mol Biol Evol 23:469–478

    Article  PubMed  Google Scholar 

  22. Irish VF, Litt A (2005) Flower development and evolution: gene duplication, diversification and redeployment. Curr Opin Genet Dev 15:454–460

    Article  PubMed  CAS  Google Scholar 

  23. Wagner A (1998) The fate of duplicated genes: loss or new function? Bioessays 20:785–788

    Article  PubMed  CAS  Google Scholar 

  24. Nagahara U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. J Japan Bot 7:389–452

    Google Scholar 

  25. Palmer JD, Shields CR, Cohen DB, Orton TJ (1983) Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor Appl Genet 65:181–189

    Article  CAS  Google Scholar 

  26. Parkin IAP, Sharpe AG, Keith DJ, Lydiate DJ (1995) Identification of the A and C genomes of the amphidiploid Brassica napus (oilseed rape). Genome 38:1122–1131

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt R, Acarkan A, Boivin K (2001) Comparative structural genomics in the Brassicaceae family. Plant Physiol Biochem 39:253–262

    Article  CAS  Google Scholar 

  28. Pylatuik JD, Lindsay DL, Davis AR, Bonham-Smith PC (2003) Isolation and characterization of a Brassica napus cDNA corresponding to a B-class floral development gene. J Exp Bot 54:2385–2387

    Article  PubMed  CAS  Google Scholar 

  29. Zhou YT, Wang HY, Zhou L, Wang MP, Li HP, Wang ML, Zhao Y (2007) Analyses of the floral organ morphogenesis and the differentially expressed genes of an apetalous flower mutant in Brassica napus. Plant Cell Rep 27:9–20

    Article  PubMed  CAS  Google Scholar 

  30. Zhao Y, Wang ML (2004) Inheritance and agronomic performance of an apetalous flower mutant in Brassica napus L. Euphytica 137:381–386

    Article  Google Scholar 

  31. Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765–783

    PubMed  CAS  Google Scholar 

  32. Lamb RS, Irish VF (2003) Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc Natl Acad Sci USA 100:6558–6563

    Article  PubMed  CAS  Google Scholar 

  33. Vandenbussche M, Zethof J, Royaert S, Weterings K, Gerats T (2004) The duplicated B-class heterodimer model: Whorl specific effects and complex genetic interactions in Petunia hybrida flower development. Plant Cell 16:741–754

    Article  PubMed  CAS  Google Scholar 

  34. Yadav SR, Prasad K, Vijayraghavan U (2007) Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second whorl organ. Genetics 176:283–294

    Article  PubMed  CAS  Google Scholar 

  35. Kramer EM, Di Stilio VS, Schlu¨ter PM (2003) Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Int J Plant Sci 164:1–11

    Article  CAS  Google Scholar 

  36. Litt A, Irish VF (2003) Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833

    PubMed  CAS  Google Scholar 

  37. Vandenbussche M, Theissen G, Van der Peer Y, Gerats T (2003) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res 31:4401–4409

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant Nos. 30571174 and 30871540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhao.

Additional information

The sequences reported in this paper have been deposited in GenBank with the accession numbers, EU159431, EU159432 and EU159433, respectively.

Wei Deng and Lin Zhou are committed as the first author.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1312 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, W., Zhou, L., Zhou, Y. et al. Isolation and characterization of three duplicated PISTILLATA genes in Brassica napus . Mol Biol Rep 38, 3113–3120 (2011). https://doi.org/10.1007/s11033-010-9981-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-9981-9

Keywords

Navigation